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ABSTRACT

Dynamic tests of three sﬁructures are described. In two cases
linear vibration theory is applied to explain the behavior of the
structures. In the third case a new method of analyzing the vibration
reéords is introduced‘to define nonlinear properties of the structure.

Free and forced vibration tests were conducted on a reservoir
outlet structure consisting of a reinforced concrete tower, 149 feet
in height, with a steel truss bridge, 339 feet long, connected to the
tower near the top. Measurements revealed five natural frequencies
and mode shapes, and indicated the extent and significance of foundation
movements. A detailed theoretical analysis of linear vibrations of the
structure is carried out to shovw good agreement with the observations
and to illustrate a general technique for the dynamic analysis of
Tframed structures.

An earth dam L85 feet long by 60 feet in height by L50 feet thick
at the base was subjected to a sinusoidal lateral exciting force at
Lhe top. Application of the theory of & truncated wedge vibrating in
shear modes is made to determine an effective shear wave velocity in
the earth fill and to estimate damping.in the modes.

A general procedure is presented for experimentally determining
the restoring and dissipating functions in lumped maess structures,
linear or nonlinear. An experiment on a single degree of freedom
laboratory structure with bolted joints is uséd to illustrate the
method.

The question of instrumentation suitable for structural dynamic
work is considered and recommendations are made on the basis of tests

and examination of many commercially available components.
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I. INTRODUCTION

Dynamic tests of structures are usually of two types: either an
ad hoc test is made to determine how a particular structure responds
to a particular force or an exploratory test is made, measuring the
responses to applied forces, with the aim of discovering the dynamic
properties of the structure so that its response to any force can be
caleculated. The latter type of test, of course, leads to results with
the widest application and does most to advance the state of knowledge
of the behavior of structures under dynamic loading. If every dynamic
test were conducted with the aims of advancing the art of testing and
improving the techniques of dynamic structural analysis, the need for

dynémic testing would eventuslly be greatly diminished.

Excitation of Structures

The word “structure"” usually refers to a building or to a large
plece of construction, but in discussing dynamic testing, the word
"structure" can be taken in a more general sense to mean any assemblage
of waterial which possesses mass and resistance to deformation. Newton's
laws of motion apply as well to an element of an electronic tube as to
a large dam. The techniques of testing might be different for each, but
the basic problem of dynamic testing 1s the same, namely, to apply a
time-verying force, preferably known and controlled, and to measure
response at significant points. Of the three structural tests described
here, two pertain to very large structures, one weighing over two million
pounds and one close to one billion pounds, whereas the third pertains
to & structure welghing less than five hundred pounds. It was found
that the experience of testing one of these structures was always perti-

nent and valuable for testing another structure.
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The size of the structure to be tested often determines the type
of testing progrem to be followed. Modern electrodynamic shaking
mechines which can be programmed can be used to subject small struc-
tures and models of large structures to uniaxial force or base exci-
tation of almost any form imaginable. In Japan, models of dams have
been subjected to simulated earthquake excitation by distributing
many electrodynamic shakers over the model, each programmed to produce
a force proportional to acceleretions recorded in an earthquake.(l)
Equipment is not presently available to excite large structures in
such a manner, so recourse must be had in the second method of testing;
that is, to apply some attainable force pattern at strategic places on
the.structure, and from the measured response to deduce relationships
which will enable a calculation to be made of the time-history of
motion.of each point on the structure, resulting from any dynamic force.

The force of the wind has been used extensively as a source of
excitation for buildings of more than a few stories. The magnitude
and distribution of the force are, of course, unknown and uncontrolled,
s0 the information which can be gained from such measurements is
usually limited to one or two of the lowest natural frequencies and
damping at very low amplitudes of vibration. References 2 and 3 show
records of wind excited vibrationms.

Earthquake excitation of large structures can induce oscillations
large enough to yield information -of structural behavior which would be
very difficult to obtain in any other way. However, the infrequency
with which intense earthquakes occur in any small area, and the fact

that they cannot be predicted has resulted in very few rccords of

structural response to earthquakes. References 4 and 5 contain records
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of structural motions resulting from earthquakes.

The efforts of man to excite large structures vary widely in their -
nature and complexity. The simplest method is manual forcing, in which‘
a person standing on the structure simply shifts his weight back and
forth at the natural frequency of the structure. Manual forcing can
be used only over a limited range of low frequencies to determine the
natural frequencies and damping of rather flexible structures. A record
obtained by this method is shown in Part II. Pullback excitation, in
which the structure is pulled laterally with a cable which is suddenly
relessed, has been used successfully on chimneys and elevated water
tanks.(a) A similar result, obtained by an entirely different means,
has been accomplished by Scruton and Harding, who applied a pglse to a
large chimney by firing small rockets attached near the top.( ) Exci-
tation of large structures by ground vibrations resulting from nearby
blasting has been reported in Reference 7.

None of the foregoing methods is ideal for exciting large structures.
In general the force cannot be well controlled in one or more of the
following respects: +time of occurrence, time-history, distribution in
space, or magnitude. If accurate duplication of the force is not possible,
the number of simultsneous records of the motions of different points on
& structure is limited to the number of recording channels available.

The eccentric-mass vibration exciter offers many advantages over
the methods described so far. It can deliver finely controlled uniaxial
sinusoidal forces simultanecusly at several points on & structure, at

frequencies of interest for a wide range of large structures. The excel-

lent control that is now available permits finely detailed studies of
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structural response to sinusoidal force. In its present state of
development the amount of force available from cne machine of reason-
able size Is often insufficient at very lovw frequencies and the energy
output is inadequate to cause any significant amount of structural damage
to a large structure, but the eccentric-mass vibrator is by far the most
effective means now availlable for studying structurel vibrations of small
to moderate amplitude.

Eccentric-mass vibrators seem first to have been used in Europe, in
the‘l920's, for geophysical work.(8) Some of the earliest uses in the
Unitéd States are reported in Reference 9. Very large eccentric-mass
vibrators, up to 20 tons force, have been used in Europe in the ship-

(10) (11)
building industry, and in Japan for tests of daums. The shaking
machines used for the tests described in Parts II and III were recently
developed at the California Institute of Technology for the California
State Division of Architecture. Individually they are small compared
to the largest machines which have been built, each being limited to
2§-tons force and lé horsepower. However, they possess an exception-
ally fine speed control and four units are available to be synchronized
to produce a larger force at one point, or to produce simultaneous
forces at several points on a structure to more effectively excite higher
modeg. The machines are described in detail in References 12 and 13.

To excite massive structures into oscillations large enough to
cause significant structural damage, some means other than eccentric-
mass shaking machines must be used. Nearby air or ground blasts are

possible sources of excitation but because of side effects they will

undoubtedly not be used extensively. A promising avenue of investigation
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is the firing at proper intervals of a number of rockets or explosive
charges attached to the structure. Only a small effort has so far been
devoted to developing this method of excitation.(6,lu)

In Reference 15 Hudson has presented an excellent bibliography

covering theory, means of excitation, and conduct of dynamic tests of

large structures.

Measurement of Structural Response

The end products of a dynamic test are the records showing the
response of the structure. In contrast to the few means available for
exciting large structures, there are commercially available a multitude
of measuring instruments which can be used in structural dynamic work.

Appendix I is devoted to a discussion of such instrumentation.

Aim and Content of the Thesis

The aim of the thesls is to contribute to the art of conducting
dynamic analyses of structures, both experimental and theoretical, as
well as to add to the body of knowledge relating to the dynamic behavior
of structures. In Part II a planar framework consisting of a tall con-
crete tower, two steel bridge spans, and a steel pier is studied. The
theoretical analysis, based on Holzer's technigue, is conducted in con-
siderable detall and appears to be the first application of this method
to framed structures. The experimental work on this framework was done
with similer detail, and 1t illustrates what can be accomplished with
readily available commercial instrumentation. The agreement between the
theoretical and the experimental results is encouraging.

In Part III an earth dam is studied. Two vibrators were operated

synchronously on the crest, and resonance curves showing many natural
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resonances were recorded with the same instrumentation used in Part II.

A theofetical analysis of the dam, made by considering it to be an
elastic truncated wedge, fixed on the ends and on the bottom, yields a
shear wave velocity for the material of the dam and predicts natural
frequencies whose ratios, one to another, show surprisingly good agree-
ment with the observed ratios. It may be noted that this analysis
determines an average in situ value of the shearing modulus of the earth
in the dam and, hence, is a promising technique for soil mechanics studies.
; Using the theory of normal modes, two resonance curves are constructed to
estimate the damping in ten of the modes. The theoretical analysis of
the dam allows one resonance curve, but not both, to be constructed to
show fairly good agreement with the experimental curve.

Part IV is devoted to a new method for determining the masses and
the constants defining the velocity-dependent and velocity-independent
restoring functions of lumped-mass structures. The method is applicable
to nonlinear as well as to linear structures. The method reguires
simultaneous records of the forces, accelerations, velocities, and dis-
plecements of all the mass points in the structure. Instantaneous values
of these quantities are then entered into simultaneous equations of
motion of the masses, which are solved by a least squares technique. A
single-mass laboratory structure, weighing under 500 pounds, was con-
structed with bolted Jjoints which slip. Excitation of the structure was
provided by a small eccentric-mass oscillator and by a pendulum. Appli-
cation of the method to the experimental records indicates that excepi-
ionally good instrumentation is required and that, practically, the mass
cannot be determined with sccuracy, but rather the known value of the

mass must be used as a criterion for Jjudging the accuracy of the solution.
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Statically measured hysteresis loops show good agreement with loops
obtained from dynamic measurements.

Appendix I is devoted to instrumentation for structural vibra-
tions. The properties desirable in an instrumentation system are listed,
and descriptions and tests of commercially available components are pre-
sented.

Appendix II describes numerical integration with a second degree
curve.

Appendix III discusses the separation of the components from
records containing horizontal, vertical, and angular accelerations.

Appendix IV treats the static calibration of accelerometers.

Bach of the main parts of the thesis is essentially complete in
itself, including summary and conclusions. Cross references to other
parts have been held to a minimum. Because of its length, Part II is

divided into six subsections.
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II. VIBRATION TEST OF A RESERVOIR OUTLET STRUCTURE

A, Introduction

Background of Test

Before a decision is made to conduct dynamic tests on a structure

there should be asked the questions, "What might be learned by testing

this strueture?"”, "Will this knowledge which might be gained be worth

the expense of the testing?", and "Will it be more profitable to test

this structure rather than some other structure?" In answer to these

guestions with regard to testing the new Encino Reservoir tower the

following observations can be made,.

(a)

(b)

(e)

The tower-and-bridge combination form a system simple enough
to give hope of understanding all of the significant features
of the dynamic behavior. The structure is essentially a
planar framework composed of beam-like elements with dis-
tributed mass and elasticity. As such it is an excellent
subject for attempting to extend to a framework the numerical
technique recently appligd to vibrations of tapered beams by
Housner and Keightley.,(l )

The vibration test of the old Encino Reservoir tower left
several questions unanswered.(g) The old tower has been
demolished and is now replaced by the new structure. A test
of the new structure should shed light on the unexplained
phenomena.

There ic much practical interest in the dynamic characterie-

tics of structures of this type. Knowledge gained from this

~ structure will be useful in the earthquake resistant design

of outlet structures, bridge piers, tall chimneys, and



similar structures.

(d) The test conditions at the site are ideal in several respects.
The site is usually unoccupied and there is usually no mach-
inery operating in the structure. This means that testing can
proceed unimpeded by other activities in the structure, and
the level of background vibration is very low. The structure
will be available for testing for many years to come, un-
changed in occupancy or by structural alterations. The fil-
ling of the reservoir will provide an excellent opportunity
to measure at a large scale the influence of a surrounding
liquid on & vibrating beam.

On the basis of these observations it was decided to proceed with dynamic

tests of the structure.

Introduction - Description of the Structure

The new Encino Reservoir tower, pictured in Figures 2.1 and 2.2,
Appendix V, is a reinforced concrete cylinder rising 1L9'-0" above its
foundation, with an internal diameter of 13'-0" and wall thickness vary-
ing from 3'-6" at the base to 1'-0" near the top. Connecting the tower
at a point 130'-0" above its base to the crest of Encino Dam is a steel
truss access bridge 339'-0" long by 10'-8" deep by 6'-0" wide, consis.-
ing of two equal spans supported at their Jjunction on a steel pier 61'-2"
in height. Figure 2.3 gives the lmportant dimensions of the structural
elements.

The structure was completed in the spring of 1962 in a construction
program which increased the capacity of Encino Reservoir. The design of

the structure, sccomplished by the owner, the Department of Water and
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Power, City of Los Angeles, was governed by earthquake forces. The
natural period of the tower, earthquake spectra, and the effective mass
of the surrounding water were considered in the design. Professor G. W.
Housner of the California Institute of Technology was consultant on the
earthquake resistance aspects of the design.

The total weight of the tower above its foundation is approximately
2,14 x 106 pounds, based on & concrete density of 144.8 1b. per cu. ft.
determined from three cores taken near the base, which showed densities
of 144.2, 146.2, and 144.2 1b. per cu. ft. These cores, 2 23/32" dia-
meter by 11 1/16", 10 35/64", and 9 39/64" long respectively, were
vibrated as free-free beams with an Electro Products Laboratories Sono-
meter. Their fundamental frequencies were found to be 2415, 2700, and
2990 cps respectively, indicating moduli of elasticity of 4.19, 4.L&4,

6 6

and 3.92 x 10° psi respectively, with an average value of 4.18 x 10

psi. The Polsson ratio of the concrete was not meesured, but was
assumed to be 1/6 in all the calculations.(lY)

Over the lower half of the tower the area of vertical reinforcing
steel is approximately 1.1% of the cross-sectional area of the concrete.
This steel adds between 6% and 7%% to the moment of inertia of the cross
section, computed on the basis of elastic action of the concrete-steel
combination. In the upper half of the tower the vertical reinforcing
steel varies between 14 and 1/5% of the cross sectional area, adding
between 3% and 1i% to the moment of inertia. At the base of the tower
the moment of inertia in terms of concrete is 6875 ft.,+ and the weight

per foot of length is 2.63 x lo“ pounds. The dead load compression

stress at the base is approximately 80 psi. Just under the penthouse



floor the moment of inertis is 1840 ft.h and the weight per foot is

9.9 x 103 pounds. In the lower 90' of the barrel are located six cir-
cular openings of 4'-0" diameter on which are mounted hydraulically
aperated butterfly valves. In the computations, sdjustments were made

to the mass of the tower to account for the openings and valves, but
initially no adjustments were made to the moment of inertia of the cross
section. Later, to improve the agreement between computed and observed
frequencies, the moment of inertia used in the computations was decreased
at sectlons through the openings.

The tower foundation is a reinforced concrete pad 48'-0" diameter
by 10'-0" thick, penetrated by a 735" diameter steel outlet pipe which
runs horizontally beneath the dam at an angle of 163° with the axis of
the bridge. The found#tion pad rests on a fine grained unweathered
sandstone having a dry density of 125 pcf lb. per cu. ft. Unfortunetely,
no elastic constants were determined for this material.

The bridge is entirely of welded construction except for a 4" thick

~deck of Douglas fir. The approximate weight of each span is 50,000
pounds. The bridge is anchored to the tower and to its abutment struct-
ure on the dam with four 1 1/8" diameter anchor bolts, the shanks of
which are surrounded by 1/8" thick micarta insulation sleeves which
serve as an electrolytic corroslon preventive measure. Micarta insul-
ation is also placed between the anchor bolt nuts and the truss, prevent-
ing any appreciable bearing force in excess of the weight of the bridge.
At the steel pier, provision was made for temperature expansion of the
bridge by elongating the holes in the bridge bearings, through which pass

1'1/8" diameter studs welded to the top of the steel pier. Each bridge
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bearing at this point consists of a stainless steel sole plate which

is bolted to the underside of the bottom chord, and rests on a graphite
impregnated bronze plate, Lubrite, which in turn is separated from the
top of the steel pier by 3/16" micarta insulation. The frictional‘forces
developed by the weight of the bridge, therefore, are the only forces
which prevent sliding of the bridge on its supports. At the tower and

at the abutment both rubbing surfaces are steel. At the steel pier the
surfaces are steel against Lubrite and Lubrite against micarta. The
manufacturer states that the coefficient of friction between steel and
Lubrite varies from 0.03 to 0.09. The dynamic coefficient of friction of
steel on steel has been reported as between 0.03 and O.O9$18)

Tbe steel pier, midway between the tower and the crest of the dam,
is of welded construction and weighs approximately 12,000 pounds. It
rests on four reinforced concrete piers 2'-6" diameter by 1l4'-0" long,
which are embedded in the compacted fill of the dam for most of their
length and are all supported by one concrete mat, 14'-0" by 20'-0" by
2'-0", which is founded in the dam. The bridge abutment structure
consists of a concrete foundation wall, 2'-8" thick by 6'-6" in height
by 11'-4" long, which supports the bridge and rests on a concrete foot-
ing 4'-8" wide by 12" thick. A concrete entrance structure is tied
to the foundation wall with dowels. The entire abutment assemblage
rests on the dam and weighs approximately 1.8 x lO5 pounds.

The dam itseif at this point consists of a UO-year old earth dam,
with 8 moist density of approximastely 120 pounds per cubic foot, capped
by 10' of compacted fill with & moist density of approximately 136 pounds
per cubic foot. A 6" concrete slab covers the face of the dam and the

bottom of the reservoir in the vicinity of the base of the tower.
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B. Mathemstical Analysis

Idealized Structure

For purposes of analysis the tower and the bridge were idealized
as shown in Figure 2.4. The springs at the bases of Tla and T, repre-
sent foundation compliance, termed “planting stiffness" by Jacobsen,(lg)
and In each case they allow rotation as well as vertical and horizontal
translation. The substitution of springs for the surface of an infinite
elastic medium is not theoretically correct, inasmuch as the springs
repurn to the structure all of the energy put into them, whereas elastic
waves in the infinite medium carry energy away from the structure. The
only analytical technique which appears practical for the structure,
however, is that of normal modes, which assumes a finite extent of per-
fectly elastic undamped material, or very special arrangemente of viscous
damping. For convenience of analysis, therefore, spring representation
wes used. It is shown in Reference 20 that if a moment, a harmonic
function of time acting in a vertical plane, is applied to & rigid cir-
cular massless disc resting on an elastic half-space in which the Poisson
ratio is zero, the rotation of the disc is closely proportional to and
in phase with the applied moment for values of &g less than 0.25, where
8q is the ratio of the circular frequency of excitation times the radius
of the disc divided by the shear wave velocity in the el?stic medium. If
some average properties are assumed for the sandstone(El and the founda-
tion pad is assumed to be perfectly rigid, the value of a, at 1O cps is
0.29, indicating that the assumption of elastic springs under the tower

is not grossly in error over the range of testing frequencies.

The other springs in the structure allow relative movement between
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the bridge and its supports due to sliding. It is recognized that the
force assocciated with the sliding motion is not the same as that associ-
ated with a spring deflection, but, once again the representation was
used for expediency. In the analysis of the structure, the spring
constants at the bases of Tla and T2 were adjusted until the computed
motions of the 1dealized structure at these locations agreed with the
observed motions In the first mode. The constants for the springs
allowing bridge sliding were adjusted until the computed relative motions
at the locations of the springs in the ildeallzed structure agreed with ‘
the observed relative motions in the first mode.

The bridge spans, By and By, are shown in Figure 2.4 to be straight
members capable of carrying bending, axial, and shearing loads, and are
connected to their supports by infinitely rigid arms of length &, the
distance from the bottom of the lower chord to the center of gravity of
both chords, a distance of 72" in this case. For convenience of analysis
the point of attachment of the bridge on the tower was assumed as 15"
below the actual point on the tower. The center of mass of the bridge
is located approximately 17.7" below the center of stiffuness. The
eccentricities & and f are é'-o" and 1'-0" respectively.

In the analysis, the tower, Tl’ is divided into two sections, the
Joint being at the level of the point of attachment of the bridge, the
level of the bottom of the lower chord of the bridge and the assumed
surface of sliding. The bottom of Tl is taken to be the top of the
foundation pad, and the boltow of To is taken as the bottom of the steel-
work. Both T; and Tp are assumed to be capable of carrying bending,

axial, and shearing loads.



-16 -

Mathematical Analysis - Transfer Functions

The basis on which the analysis of the structure is founded is the
transfer function; which is defined by the following question: If on
the left end of an undamped elastic member, straight in this instance,
there is imposed & harmonic exciting function (A sinwt), where A is
one, and only one, of the following: transverse shear V, bending moment
M, angular displacement ©, transverse displacement Y, axial force F, or
axial displacement U, then what values of these six quantities (transfer
functions) are necessary at the right end of the member to hold it in
dynamic equilibrium at the frequency w ? For straight uniform memhers,
with shear and rotatory inertia neglected, transfer functions are
easily derived from the differential equations of axial and transverse
motion, but for nonuniform members digital techniques are the only prac-
tical approach.

The technique used here to find the transfer functions consisted
of first dividing the member into a finite number of segments, AX in
length, and concentrating the mass, m, in the half segments on either
side of the division points at the division points. The material of the
member between the division points was then assumed to be weightless and
to possess constant area A, moment of inertia I, density P , modulus of
elasticity E, modulus of rigidity G, and shear coefficient & , over the
segment. Then, with reference to Figure 2.5, the following equations for
the vibrating member msy be written for small values of 9, it being

understood that all terms are multiplied by sinwt:

Va

My

2 .
Vn_l + m Yn-l (2.1)

2
M 1+ V, A%, -F6, 4 A X - fInA‘X nw e (2.2)
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G2 Op-1 + BXp (Mp + M‘l:l--].) (2.3)
2EL,
\ , 2
Yp o= Ypo1 + 6 AXp+ (AX )T (Mg + My) - xbXpV, (2.4)
3EI, 2 GAp
2
Fp=Fpptm & U1 (2.5)
Up = Upog - FdXp - Ve 1A%y (2.6)
E A, EA

These equations are then applied successively to the segments and divis-
ion points of the member, proceeding from left to right. The final values
of these quantities, on the right end of the member, are the desired
transfer functions.

The mein features of this technique have appeared in Reference 16
and its references, but several of the terms require explanation. On
the right side of equation 2.2 the fourth term expresses the moment due
to rotatory inertia of the segment between the division points. The seg-
ment is assumed to have distributed mass for this calculation. The third
term in equation 2.2 indicates a coupling between axial and transverse
vibrations. The force consists of a constant term and a time varying
term, A+Bsinwt, which means that the product Feé is not of frequency
(), and hence the equation is not valid throughout a cycle of vibration.
The effect of the dynamic component of F in this term is assumed to be
small for all thé members of this structure, ana later it will be demon-
strated to be smal;. In equation 2.2 then, F represents only axial force
which does not vary in time. On similar grounds, V in equation 2.6 is
assumed to represent only shear force which does not vary in time., Allow-
ipg these two limitations, the equations 2.1 through 2.6 are linear. The

fourth term in equation 2.4 expresses the shearing deformation between
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the division points. It should be noted that the moment of F times
transverse deflection due to shear has been neglected.

In the most general case the introduction of one of the six
quantities at the left end of the mewber results in six quantities
at the right end, so there can be as many as 36 linearly independent
transfer functions for one member. Each quantity, V, M, &, Y, F, U, at
the right end of the member is thus expressed as a combination of the
six quantities et the left end of the member. As is explained later,
the solution of the equations of equilibrium and continuity at the joints
and at the boundaries of the structure permits the determination of the

left end quantities and the natural frequencies.

Mathematical Analysis - Calculation of the Shear Coefficient

If the shearing deformation of the tower is assumed to be determined

by the shearing stress at the neutral exis and this stress is given by

ve

f = To » (2.7)

where V is the shearing force, Q is the first moment of the area on one
side of the neutral axis taken about the neutral axis, I is the moment
of inertia, and b is the total thickness resisting shear, then the coef-

ficient o¢ in equation 2.4 has the form

202 + t°/3) (2.8)
D% + t°

where D is the mean diameter of the shell and t is the wall thickness.
Values of & for the tower shell vary between 1.9% at the bottom and 1.99

near the top.

(22)
From energy considerations, Sutherland and Goodman give the
formula f 2
oc = A Jp T7dA (2.9)

ve



where A is the cross sectional area, f is the unit shearing stress, and
V is the shearing force. If, for an epproximete analysis, the vertical
component of shear stress in the shell is assumed to be constant over
the area included within lines making 45° with the neutral exis, and

zero elsewhere, equation 2.9 gives the valueX= 2.0, the same as given

by equation 2.8 when t/D = O.

Mathematical Analysis - Effect of Finite Length of Element

In equation 2.2, the term releting to rotatory inertia is exact
only for beam elements of infinitesimal length. For elements of finite
length, AX, the moment of inertia, I, about an axis through the cross

sectional centroid at one end of the element is

I= pAX(Ic + A A3x22), (2.10)

where P is the mass density, and I, is the moment of inertia of the
cross sectional area, A, about the axis through the centroid. For a
typical cross section of the tower the second term in the brackets, ex-
pressing the effect of the finite element length, increases I by 5% for
an element 2'-0" long. If the element is assumed to rotate about a trans-
verse axis midway between the ends of the element, the increasse due to
the second term is only 0.6%. It is shown later that rotatory inertia
changes the first two frequencies by only a small amount, so the increszse
in I due to finite element length has only a very small effect on the
first two frequencies,

It can be concluded from the data in Reference 16 that the effect
of using a finite length of element, 2'-0", to approximate the 149’
tower is to cause only a very small decrease in the computed values of

the first two frequencies.
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Mathematical Analysis - Approximations of Trussed Mewbers

The substitution of solid members in Figure 2.4 for the trussed
members Ts, Bp, and Bl, in the computations requires careful examina-
tion. A comparison of dynamic behaviors is called for, but because
of the complexity of the problem of a vibrating truss, comparisons under
static losd only were made between the trusses and the solid members.

Professor C. W. McCormick of the California Institute of Technol-
ogy hes written a program for the Burroughs 220 digital computer to
solve for the member forces and joint displacements of two dimensional
structures subjected to static loads. With the sid of this program,
static solutions of the trussed members were obtained relatively easily
veven though the brildge trusses were indeterminate because of welded
Joints and T2 was additionally indeterminate because of framing.

In Table 2.1 displacements of To and displacements of substitute
structures caused by a transverse force at the top are shown for several
different construction conditions. In all cases, the structures are
considered fixed at the base. Column a gives displacements of the points
of T, as shown in Figure 2.3 with all joints welded. Columns b and ¢
are not pertinent to the problem but they were easily obtained at the
time column & was computed and are of interest to structural engineers.
They represent deflections of Ty with all Jjoints assumed hinged, both
diagonals assumed effective in column b and only one diagonal assumed
effective in column ¢. It is seen that the effect of the restraint due
to welding is very small, but for this structure and loading the second
diagonal in each panel adds appreciable stiffness. Column d gives the
bending deflections of & solid tapered beam having & moment of inertia

equal. to the total areea of all the legs of T, times the square of one

2
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half of their separation distance. These deflections were obtained by
evaluation of the exact expression for deflection of the beam and do
not include the effect of shear.

In columns e and f, To is considered to be made up of seven ele-
ments, esch having a moment of inertia equal to the total area of all
the legs times the square of one half of the distance separating the
legs midway between the ends of the element. The computations were
performed with the numerical procedure previously described, the fre-
quency « being zero. 1In column e, the displacements are due to chord
shortening and lengthening only, whereas in column f the effects of
changes in the lengths of the diagonals are included. For convenience,
one average angle of intersection for all the diagonals was assumed,
this being only a slight modification of the actual structure. The
ratios of the displacements computed for the segmental beam including
shear, column f, to those computed from the original trussed structure,
column &, are shown in column g. In the region of greatest importance
to vibrations of the entire structure, the approximate technique gives
static deflections 3% high. In later computations the modulus of elas-
ticity of T2 was decreased by 3% as a compensation.

The action of T, under dynamic excitatlon is not, of course, simply
that of a massless spring. The degree of its influence on the tower
vibrations, however, is indicated by the facts that its totasl mass is
approximately 0.56% that of the tower and, in the fundamental mode of
the structure, the top of Tp undergoes roughly one-half the displacement
experienced by the top of Tyg. The static spring constant of Tp is

approximately 12,000 1lb./in. for a transverse force at the top, whereas
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;t requires approximately 2.5 x 10° pounds 8t the top of Tla to deflect
it one inch. The relationship between T, and 'I‘l is therefore roughly
that of two single degree of freedom systems connected in parallel, one
having a mass 180 times greater and a spring 21 times stiffer than the
other.

In order to estimate the effect of using only seven segments for
the dynamic analysis of Tp, an analysis was made of a solid linearly
tapered cantilever of rectangular cross section, whose depth, in the}
direction of motion, at the tip was one half the depth at the base, and
whose breadth at the tip was twice the breadth at the base. These
proportions result in g beam with a constant cross section throughout
the length and with a moment of inertia at the tip equal to one quarter
the moment of inertia at the base, roughly approximating TE’ although
the raﬁe of change of moment of inertia along the length is not the
same &6 in Tp. Then, using the technique of Reference 16, the firsf
and second frequencies were found for this beam, treated first as a beam
of 100 segments and then as a beam of seven segments. The first and
second frequencies of the seven-segment beam were, respectively, 0.988
and 0.959 times the first and second frequencies of the 100-segment
beam, which were 6.7 cps and 36.5 cps.

To examine the representation of a trussed bridge span by a solid
member, whose properties are shown in Figure 2.6 (a), two static loading
conditions were considered, an axial force at the level of the centroid
of the bottom chord, and a transverse force at the centerline of the

span, shown in Figure 2.6 as cases (a) and (b). For the loading of

case (a), deflections of a truss with hinged connections were computed
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| =8.42x10% n%

A=20.72 n2
o= 70"
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(a)

2 5

(b)

FIGURE 2.6
STATIC LOADS ON EQUIVALENT BEAM
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by elide rule, end were found to agree with deflections of the welded
truss, computed by Professor McCormick's program, to within é%, indi-
cating that the effect of rigid Joints is very small. Then, using the
moment-area relationships, several deflections of the solid member were
computed by slide rule and were found to differ only in the third or
fourth decimal place from those determined by the previously described
numerical procedure applied to an 18-segment solid member. In Table
2.2, however, vertical deflections of the solid member under the loading
of case (a), shown in column 2,are as much as 9% larger than the deflec-
tions found by Professor McCormick's analysis of the welded truss, shown
in column 1. One sidelight of this surprising variation is illustrated
in Figures 2.7 (a) and (b), where the bottom chords of two truss panels
are shown under compressive loads. Although the deflection angle @

is the same in both instances, the ends of the panel in view (a)

undergo relative vertical deflection not experienced in the panel in
view (b). In the case of the bridge truss in the Encino Reservoir
structure, if the upper ends of all the diagonals pointed toward mid-
span the centerline deflection under loading condition (a) would be
increased by approximately 25%. The shortening of the distance between
the supports of the truss is always the same as for the solid member,
however, regardless of the configuration of the diagonals. This

means that if both the truss and the solid member are considered as
maséless springs resisting the deflection of the tower, their effects
on vibrations of the structure are identical. This static spring
constant for compression of the bottom chord is 2.78 x lO5 lbs. per

inch for one bridge span. It is found later that the longitudinal

force existing in the bridge when the entire structure is vibrating at
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FIGURE 2.7
ILLUSTRATIVE TRUSS PANELS
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its fundamental frequency is only about 0.6 the static force which
produces the same shortening of the distance between bridge supports.
The transverse inertia of the bridge is responsible for most of this
difference between the static and dynemic spring constants.

Vertical deflections of the centroid of the chords are shown for
loading condition (b), the concentrated load in the center of the span,
in columns 3 and 4 of Table 2.2. Column 3 pertains to the actual truss,
‘and column 4 pertains to the solid beam. The centroid of mass of the
bridge is approximately 17.7" below the centroid of the chords and its
vertical deflections differ only by a fraction of 1% from the deflec-
tions shown in column 3. Midspan deflection of the solid beam under
this loading condition is seen to be 5% too small, whereas the shorten-
ing of the distance between the supports of the sélid beam is seen to
be 9%% too large.

To provide a compromise for the several discrepancies, the eccen-
tricity of the centroid in the solid beam representation was reduced
to 95% of its theoretical value and the two loading cases were recom-
puted, the differences between deflections in the revised solid beam
and in the actual truss appearing in Figure 2.8. Exéept at the supports,
horizontal deflections of the solid beam are compared with horizontal
deflections of the center of mass of the actual truss. The large dis-
crepancies in these horizontal deflections result from the fact that
the axis of the modified solid beam lies 14.2" above the center of mass
of the truss. At the points where the 28% discrepancies occur 1In cases
(a) and (b), the actual horizontal deflections are only 11% and 53%

respectively of the vertical deflections which occur at midspan, so the
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effects of the discrepancies on vibrations of the structure are not as
great as their numerical values would indicate. The effect of the
inertia of the bridge on the fundamental mode shape and on two fre-
quencies of the structure is shown later in Table 2.6.

If the energy method were to be used for finding the fundamental
frequency of the entire structure, some assumption would have to be
made regarding the fundamental mode shape. Often a gravity loading is
used to approximate a fundamental mode shape, but in the case of a bridge
span the deflected shape due to an axial force at the level of the bot-
tom chord might be considered. The importance of the proper choice of
static loading for approximating the fundamental mode shape is illus- |
trated by comparing the retio of the vertical deflection at the center-
line of the span to the shortening of the distance between the supports
for four loading conditions: case (a) and case (b) of Figure 2.6, a
uniform gravity loading, and the dynamic loading of the fundamental
mode of the modified solid beam with the support conditions shown in
Figure 2.6. These ratios are respectively 1.99, 6.74%, 4.77, and 5.78.
The first two natural frequencies of the modified solid beam with the
support conditions shown in Figure 2.6 are 3.03 and 9.46 cps. If the
hinges are maintained at both ends, but the ends are held a fixed
distance apart, the first two frequencies are 3.78 and 9.51 cps. It
is shown later that these frequencies of the bridge are very close to

certain frequencies of vibration of the entire structure.

Mathematical Analysis - Solution of the Framework

To illustrate the principle used to find the natural frequencies

of the intake structure Figure 2.9 shows an elastic framework, sassumed
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to be vibrating in the plane of the paper with all parts in phase at
a frequency W . Let the number of members be designated by Ny, the
number of internal Jjoints by J, the number of boundary points by Bp,
and the number of members framing into an internal Jjoint by Nj. In
Figure 2.9 there are eight members, four internal joints, four boundary
points, and freming into joints a, b, ¢, 4 there are three, three, two,
and four members respectively.

The dynamic forces and distortions in each member will be known
only if all six of the quantitles V, M, 8, ¥, F, U sinw t are known
at the left end of the member. Because normal mode vibration involves
relative, not absolute distortion, an arbitrary value may be assigned
to one of the six gquantities in one of the members, meaning that the
total number of unknowns is (6Ny-1), equal to 47 in this case. At each
internal Jjoint there may be written three independent equations of
equilibrium and 3 (RJ-l) independent equations of continuity, giving
a total of 3J + 32%_1 (Nj-l) - 32‘321 N; equations, equal to 36 in this
case.®* When there are added to this the three equations available at
each boundary point, 3 Bp, 12 in this case, the total number of independ-
ent equations becomes 3£§=l Nj + 3 BP’ equal to exactly six times the
number of members in the framework. There are thus always (6M) equations
for (6M-l1) unknowns regardless of the staticel determinacy or indeter-
minacy of the framework. The overdetermined set of equations can be
satisfied only for particular frequencies of vibration, the natural fre-

quencies of the structure.

¥ Where members Jjoin &t & boundary point, the number of independent
equations available is the same as if the particular joint were
counted only &s an internal joint.
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Figure 2.10 shows the lettering scheme that was used in writing
the equations of equilibrium and continuity of the Encino Reservoir
structure. The letters at the ends of the bridge spans refer to quan-
tities at the lower ends of the rigid arms in Figure 2.4. Only those
quantities of interest are shown. For instance, at the bottom of Tla
and Ty, no displacements are shown because the displacements at these
points are simply proportional to the forces, the constants of propoer-
tionality being the constants of the springs connecting the structure
to the ground. Hence, it is not necessary to compute separate transfer
functions for displacements occurring at these points. A£ the right
ends of the bridge spans no rotations are shown because the rotations
that occur there are not used in the dynamic analysis.

For the numerical analysis, the lower portion of the tower, Tla’
was divided into 2'-0" segments, whereas 1'-0" segments were used for
Typ- The trussed members, Bl’ B,, and TQ, were divided at thelr panel
points as indicated previously. Then proceeding from left to right on
the bridge spans and from bottom to top on the vertical members, the
transfer functions, at a given frequency, &Jl, were computed for all the
quantities shown at the left and bottom ends of these members. As an ex-
ample, at the left end of BE’ GM was assigned the value QM = l-sin Ult,
and Vy, YM, FM and UM were all made zero. Using the step-by-step pro-
cedure described earlier it was found that at the right end of Bo, Yy

= CEB sin it. In the identification scheme used,
the six quantities V, M, o, Y, F, U are identified by the numbers 1, 2,
3, 4, 5, 6 respectively, and the members are identified by the numbers

shown in Figure 2.10, B; and B, having the same number since their proper-

ties are identical. The first superscript stands for the member
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number, the second superscript for the quantity introduced at the left
or bottom, and the subscript stands for the quantity determined at the
right or top of the member. The value of 023 is directly proportional
to the amplitude of QM and is dependent in a more complex manner on the
value of édl.

When the transfer functions had been compﬁted for all the quanti-
ties shown at the left and bottom ends of the members in Figure 2.10,
each having been assigned in turn the value (1'sin &Jlt), it was then
possible to express the quantities at the opposite ends of the members
in terms of the quantities at the left and bottom ends. For instance,
in T4

Vo = Cil Vg + CieMB + C%s FB .

For this member Ci5 is found to be zero. The shear VB was assigned the
value of unity, thus determining the scale for all the other quantities
in the structure. The equations of equilibrium and continuity were then
written in matrix form, AB = C, where A is a 21 x 21 matrix of the trans-
fer functions, B is a 21 x 1 matrix of unknowns, and C is a 21 x 1
matrix containing transfer functions and zeros. This matrix equation
is shown in Figure 2.11, Appendix V, whgre for convenience the unknown
quantities in B are shown above their corresponding columns in A. Al-
though there are a total of 29 unknowns in this structure, only 21
equations were written, it being recognized that My and My are zero
and the three displacements at the bottom of both Tia and T2 are direct-
ly related to the forces there. The one remaining equation to be
satisfied is the requirement that thefe be no moment, My, at the top of

le. By successive approximation, the value of OJl was adjusted until

this condition was met.
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The me?hz% is seen to be an extension of the Holzer or Myklestad-
Prohl method% The limitation of its use is determined by the number
of simultaneous linear algebraic equations which can be solved quickly
and accurately. A subroutine used for the Burroughs 220 computer in
the computing center of the California Institute of Technology will
solve a maximum of 99 equations, representing a structure of perhaps
17 members, in approximately 20 minutes. This means that it would
require somewhat more than 20 minutes for each guess at the natural
frequency, a prohibitively long time. A subroutine available for the
I.B.M. 7090 computer will solve a set of 75 eguations in approximately
one minute, the time required increasing approximately as the cube of
the number of equations. Inasmuch as the accuracy of & solution de-
pends upon the determinant of the hatrix to be inverted, the question
of accuracy is an individual problem for each different framework. The
accuracy of the computations for the Encino Reservoir structure is dis-
cussed in Section E.

If the technique is revised slightly, the response of the undamped
structure to an applied sinusoidal forece at any point can be found.
Suppose it is desired to find the response'resulting from the force
produced by the shaking machine, bolted to the penthouse floor. Since
the axis of this force is only about two feet above the junction of Tla
and Tyy, it will be satisfactory to replace the effect of the force on
the structure by a force and & moment located at the junction of T;,
and Tyy. The equilibrium equetions,Figure 2.11, Appendix V, at this
Joint, must then be modified to allow for the presence of this external
shear and moment. In addition, the equation Mp = O is added to the set

of simultaneous equations, and Vg is no longer assigned the value unity



-38-

but becomes an unknown. This means that one equation and one unknown
have been added to the set of equations, so a solution of the set is
still possible. The column matrix (C) now contains only zeros except
for the two equations of equilibrium involving the shear and the moment
at the top of T;,. The solution of this set of simultaneous equations
then yields the values of all the quantities at the left and bottom ends
of the members, from which the amplitudes of response of all the points
on the structure are easily found. If the external force is located

at some distance from the end of a member it is necessary to cut the
member at the location of the force, adding six additional unknowns and

six additional equations.

Mathematical Analysis - Computer Program

The numerical work in this analysis was accomplished on the
Burroughs 220 digital computer. Data for the computation of the proper-
ties of each member were entered into the computer, which, after calcu-
lating the values, stored them on an auxiliary magnetic tape unit. The
main program was then entered, after which the computer called out for
each member in turn the data stored on magnetic tape, calculated the
values of the transfer functions for a given frequency and stored them
in memory. When the transfer functions had all been computed, the
computer solved the 21 simultaneous equations of equilibrium and contin-
uity, and from these answers computed the moment at the top of le.
This moment, A , used as a criterion for the natural frequency, was
printed out for the operator to see. A new trial frequency was entered

and the computation process was repeated to produce a new value of A .

Then using these two values of A, at the operator's discretion, the
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computer interpolated for a new trial frequency and repeated the cycle
automatically until the value of A was as small as desired. The com-

puter then calculated the mode shape associated with the frequency and
printed out the quantities V, M, ¢, Y, F, U for each division point of
each member.

The feeding in of the data tape, computation and storage of the
member properties, storage of subroutines in memory, and the feeding
in of the program tape required approximately 115 seconds.‘ From this
point on the.fime to produce one value of A for a given frequency was
38 seconds. The program accupied approximately 3750 words of the 5000

word memory available.

Mathematical Analysis - Tests of the Method

To test the general procedure, & framework was constructed of five
identical members connected end—to-end to form & uniform cantilever
beam, each member containing 20 division points. With shear, rotatory
inertie and dead load compression neglected, the first two mode shapes
of this structure, normalized so that the tip deflection vas unity, were
found to differ from their corresponding Bernoulli-Euler values only by
e digit in the fourth decimel place.

To test the correctness of the terms involving shear deflection
and rotatory ineftia, the fundamental frequencies were found for several
simply supported beams with different ratios of X E/G and I/ALE. The
ratios of these frequencies to those computed with shear and rotatory
inertis neglected agreed with the values found by Sutherland and Good-
m&n€22) In addition, the first three frequencies were found for a

' 2
cantilever besm with the ratio K E/G equal to 3.20 and I/AL™ equal to
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0.0036. The ratios of these frequencies to the frequencies computed
with shear and rotatory inertiea neglected also agreed with the values re-
ported by Sutherland and Goodman.¥
To check the effect of axial force on bending vibrations, the first

two frequencies of a uniform cantilever beam with a constant axial com-
pressive force F = 0.14 EI/LE, shear deflection and rotatory inertia
neglected, were found to be 0.974 and 0.993 respectively, fimes the fre-
quencies which occur when the axial force is not present.' An approximate
formula, due to Timoshenkofzs) for the ratioc of the first frequencies
gives the value 0.975. Timoshenko's formula does not apply to the
s;cond frequency, however.

| Because the only members subjected to known dead load shear are the
bridge spans, and & rough caiculaticn shoﬁed that the term involving dead
load shear in equation 2;6 has an effect of the order of 0.1% of that due
to axial force, the effect of dead load shear on the simultaneous longi-

tudinal and transverse vibration was not included in any of the computa-

tions.

C. Equipment and Testing Procedure

Manual’Forcing

It was found that the fundamental mode of the structure, with and
without the bridge attached, could be excited by one man shifting his
weight back and forth while standing on the penthouse floor. A portion

of a record of manually excited vibration of the tower only is shown in

* The results of Sutherland and Goodman have been reprinted in References
23, 24, It should be noted that the cantilever beam charts in these
publications have been printed with an error in the decimal place of
the abscissa, resulting in the abscissa appearing ten times too large.
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Figure 2.12, Appendix V. At the natural frequency of the tower with the
bridge attached, espproximately 2.1 cps, it was difficult to maintain thg'
proper phase relationship between the force and the motion of the struc-
ture for more than a few seconds, but this proved to be long enough to
build up accelerations as high as 0.002 g on the penthouse floor. Inas-
much as the person exciting the structure could not feel the tower's
motion it was necessary for him to watch the oscillograph trace while
doing the forcing. A metronome, set to the frequéncy of the structure,
was tried as an aid to maintaining the proper rhythm, but at 2.1 cps

the visual signal of the oscillograph proved more effective than the
audible signal. Attempts at forcing at one half the frequency of the
structure were less successful than those made at the natural frequency.
At 2.1 cps, one man forcing alone was more effective than two men trying
to synchronize thelr motions.

The important structural properties which relate to manual forcing
are the natural frequency of the structure, the stiffness, and the
damping. From the experience on the Encino tower it would appear to be
difficult for anyone but a person with exceptional rhythm to maintain
oscillations at above 3 cps. Exciting very low frequencies, however,
should not be difficult if a timing signsl is used. The stiffness referred
to, of course, is dynamic stiffness, but if the fundamental mode is being
excited, the static stiffness may be used for estimating the amplitudes
of motions that can be expected. As mentioned previously, the free stand-
ing tower was calculated to have a static stiffness of approximately
3 x 106 1bs. per f£t. when applied force and the deflection measurement

were both located on the penthouse floor. The highest damping observed
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during the manually forced vibrations was 1.17% critical.

Attempts to get clean traces of wind or manually excited transverse
vibrations of the structure, perpendicular to the bridge, were not
successful for two reasons. First the wind acting on the side of the
bridge caused considerable background vibration, and second, the struc-
ture had natural frequencies in the transverse direction of 1.43, 1.56,
and 1.76 cps, and the person forcing the structure was never able to
tune the frequency of his motion fine enough to produce a record without

beats.

EQuipment and Testing Procedure - Structural Vibration Exciter

Machine excited vibration tests of the structure were conducted
with the shaking machine which is shown in Figure 2.13, Appendix V,
and which is described in detail in References 12 and 13. Briefly, the
machine consists of two eccentric masses which rotate in opposite direc-
tions in horizontal planes’alternately adding and cancelling their
centrifugal forces to produce a horizontal sinusoidal force directed
along one axis. Because the eccentric weights do not lie in the same
horizontal plane, a small sinusoidel moment, 0.28 foot-pounds per pound
of force, is produced in e vertical plane perpendiculur Lo the axis of
the sinusoidal forée. The machine produces a maximum sinusoidal force
of approximately 800 pounds at 1.0 c¢ps, the force increasing as the
square of the frequency. The maximum frequency at which the machine can
run is 10 cps and the maximum allowable force is 5000 pounds, which
necessitates decreasing the amount of eccentric weight at higher speeds.
With power from & large city power system, the speed control held the

frequency of the force on the lightly damped Encino Reservoir structure
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within 0.004k cps at lower speeds and within 0.016 cps at higher speeds,
the frequency belng measured over one second intervals by a digital
device that counted 300 pulses per revolution of the eccentric weights.
Although the machine itself was bolted to the penthouse floor, it was
possible to orient the sinusoidal force in any direction by removing
one of the drive chains and rotating one of the weight buckets by the
proper amount before reassembling the chain.

Two groups of eccentric weights, each of which can be stacked four
layers deep in the weight buckets are used in the shaking mechine. ‘One
layer of the smaller weights produces 46.7 lbs. force at one cps, where-
as one layer of the larger weights produces lhL4 1lbs. force at one ¢ps,
the force in all cases increaslng as the square of the freguency. The
weight combinations are designatedvby two numbers, the first indicating
the number of layers of large weights, and the second indicating the
number of layers of small weights. Thus, a (1 - 2) loading means the
force produced is 238 lbs. at one cps. Inasmuch as the weight buckets
in the machine used at Encino are counterweighted, no force other than
that due to the reported weight loading is introduced, and a force due
to a (0 - 2) loading is exactly twice the force due to a (0 - 1) loasding.

A special loading consisting of a 4.02 lbs. weight at & 16 11/16"
radius in each bucket was used in an attempt to excite low level oscil-
lations in which the friction at the bridge bearings would be sufficient
to prevent sliding of the bridge. This loading, designated as (L.L.),

produced a force of 13.7 lbs. at one cps, 29% that of the (0 - 1) load-

ing.
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Equipment and Testing Procedure - Instrumentation

The instrumentation consisted of two Statham Instruments Corporation
strain gage accelerometers, model A5-2-350, one Consolidated Electrodynem-
ies Corporation reluctance-type accelerometer, type 4-260, a William
Miller Company model C-3 carrier amplifier, and a Consolidated Electro-
dynamics Corporation direct writing oscillograph, model 5~léh. These
components are described in Appendix I, so only a few details are given
here. The strain gage accelerometers, of + 2 g range and 100 cps natural
frequency, each contained a L-arm bridge of unbonded strain gage wire.

An accelerometer is shown in Figure 2.1k, Appendix V, mounted on a 6 3/L
lb. steel block which was placed on horizontal surfaces at various places
in the structure where accelerations were to be measured, friction only
holding the block to the surface. On the side of the tower, the acceler-
ometers were bolted to plates which were bonded to the tower wall with

a8 quick setting epoxy adhesive.

The carrier amplifier, which produced a 3000 cps carrier wave
adjustable up to 10 volts, possessed an exceptionally low noise-to-signal
ratio, so that a sinusoidal acceleration of 0.00lg could be recorded by
a galvanometer of 100 cps natural frequency as a wave of 5 1/2" peak-to-
peak amplitude with a trace width, under the best conditions, of 0.05",
composed chiefly of 60 cps signal. In places where high frequency accel-
erations were present, such as close to the shaking machine and on the
bridge at higher frequencies, or where measured sccelerations were
extremely small, a galvanometer of 18.5 cps natural frequency, and lower
sensitivity, was sometimes used to reduce the higher frequency components

in the record. The oscillograph recorded all the traces on & light
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sensitive roll of paper, 7" wide, which developed under daytime lighting
conditions within a few seconds. A cardboard shield was placed over the
front of the oscillograph to prevent the record from fading due to expo-‘
sure to sunlight. In Figure 2.15, Appendix V, looking along the bridge
towards the dam, the amplifiers and the oscillograph are partially
exposed behind the amplidyne control unit for the shaking machine. The
small black object in the center of the bridge deck is an accelerometer
on a portable mounting block oriented to sense vertical accelerations.

A magnetic pickup is shown clemped to the top plate of the machine
in Figure 2.13, Appendix V. For each revolution of the weight buckets,
this pickup produced one pulse which, when recorded by the oscillograph

de b

_— 2000
witd & VU B8

O cps
between the force and the response.

The instrumentation was satisfactory for measuring vibrations excited
by the shaking machine and for manually excited vibrations measured on
the penthouse floor. The measurement of base motions caused by manual
excitation, however, would have required approximately ten times more
sensitivity than was available. The 100 cps natural frequencies of the
accelerometers and the galvanometers provided a good picture of phase
lag and of the non-linear behavior of the bridge at higher freguencies,
but there were many instances in which the reduction of high frequency
components by the use of lower frequency elemenﬁs would have been desir-

able. Some accelerometers of greater sensitivity and lower natural

frequency are described in Appendix I.

Equipment and Testing Procedure - Testing Procedure

The forced vibration tests on the structure required 15 days in the
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field, but because the site was remote from the campus and the electronic
equipment had to be transported and set up each day, only an average of
four or five hours of each day were actually devoted to testing. The
entire field operation was conducted by only two men, so that a consider-
able amount of the testing time was consumed in moving accelerometers

and in handling cables. The recording and control equipment were located
25 feet out from the tower on the bridge so as to be safely away from the
shaking machine in case it should rupture or break loose from its mount-
ings. The motion of the equipment sitting at this point on the bridge was
so great in the higher modes of the bridge that writing on the oscillo-
gram was difficult. At all the natural frequencies the horizontel, vert-
ical, and torsional movements of the bridge were very noticeable to the
operators, and in fact it was this personal observation that limited the
amplitudes of the applied force. Although a force of 4700 pounds ampli-
tude was applied at 10 cps, at the fundemental frequency in the direction
of the bridge, 2.1l cps, the maximum force was limited to 825 lbs., re-
sulting in penthouse floor motion of 0.024" amplitude. In the direction
perpendicular to the bridge, at the fundamental frequency of 1.76 cps,
the force was limited to 294 pounds, resulting in a penthouse floor motion
of 0.045" amplitude. Although these amplitudes look very small on paper
and the stresses in the structure associated with them are computed to

be negligible, at 130' above the ground the motions seemed to be as large
as & rational person would care to experience. The visible motions at
the anchorages of the bridge were the chief cause of concern to the

operators.
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Equipment and Testing Procedure - Suggestions for Dynamic Testing

In testing the Encino Reservoir structure a considerable amount of
time was wasted because of lack of experience in dynamic testing. The
following recommendations are made as & result of the experience gained
in this testing program.

1. Analyze the structure to the fullest extent possible with the
best available informetion prior to the test. Attempt to calculate &all
of the natural frequencies and mode shapes which will be encountered.

If the calculations had been carried further before the field work was
started at Encino, much confusion about mode shapes would have been
eliminated. From this initial analysis it can be established that certain
measurements should not be attempted, i.e., measurements of motion in one
direction in the presence of a much larger motion in the perpendicular
direction.

2. As a first step in the field work make simultaneous records of
steady state vibrations from as many points as possible, chosen on the
basis of the prior analysis. Rundown records, produced by suddenly
cutting off the power from the exciter and recording the response as the
machine coasts to rest, are of some value for estimating frequencies, but
if several modes are present the rundown records are complicated and
difficult to eveluate. The rundown records shown in Figure 2.16, Appen-
dix V, show beats after each natural frequency has been passed. The top
trace is vertical acceleration at panel point 13 on By, the center trace
is vertical acceleration at panel point 5 on Bp, and the lower trace is
horizontal acceleration on the penthouse floor.

Scan the frequency range closely, especially in the viecinity of
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resonances, and take care to get the peak readings. This means, of
course, that the record must be visible in the field. Then, if the
situation permits, retire from the field for as long as necessary to
evaluate the oscillograms and to plot the resonance curves. This work
should reveal the natural frequencies and the approximate mode shapes,
or at least indicate what measurements should be made to determine

them. Refine the analytical work at this time in the light of the first
set of data.

3. On returning to the field for more precise data about the mode
shapes, take several records at close intervals covering the range
immediately above and below the suspected natural frequencies. Meke
each record long enough to indicate if the vibration is steady state.
The use of two or more channels for defining mode shapes is absolutely
essential.

k. Do not disregard the effects of temperature, humidity, structur-
al changes, and the passing of time on the dynamic behavior of the
structure. Do not overestimate coefficients of friction. Changes in
natural frequencies and mode shapes from one test to another can result
from any of these items.

5. If the static 2 g calibration is used, calibrate at least once
in the middle of the day as well as at the beginning and the end of the
day. Take a few dynamic readings with several instruments together on
one point as a check of consistency among the channels. If sensitivity
of the instrumentation varies with line voltage, monitor line voltage
continuously with a voltmeter of good quality. The use of one of the

galvanometers of the oscillograph to provide a measure of line voltage
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on each record is suggested as a convenient method.

6. Although measuring the oscillogram amplitudes, reducing the daté
by slide rule, and manually plotting the resonance curves is a tedious
task, it is the recommended method. A computer program was written to
reduce measured trace amplitudes of Encino data to accelerations and
then to put out a tape which was used to drive an sutomatic plotting
machine, but the time spent in preparing the trace amplitudes for the
computer and in carrying out the computer work and the machine plotting
proved to be more than the time reguired by the menual method. Machine
plotting was found to be less precise and less versatile than manuasl

plotting.

D. Vibrations of the Free-Standing Tower.

Table 2.3 indicates the effects of shear deflection, rotatory inertla,
deaed load compression, and of rotational and translational foundation
compliance on the first two computed frequencies and on the fundamentél
mode shape of the tower without the bridge attached. Dimensionless terms
relating to these phenomena do not enter into a frequency formula in a
simple manner, so the effects occurring here cannot exactly be applied
t0o other cases, but the trends resulting from each can be observed. In
all cases foundation compliance constants and the modulus of elasticity
of the concrete are assumed to have the same values in the second mode as
in the first mode.

In Table 2.3 the increases in the fundamental frequency, f;, and the
increase in the ratio of the second frequency to fundamental, fg/fl = F,
ag & result of neglecting shear deflection in the tower are seen to be
approximately proportional to the value of &K, the shear coefficient.

If shear is neglected in calculating the freqguencies of the tower, f1 is-
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increased by 1.8% and F is increased by 6.9%. The neglect of rotatory
inertia further increases f; by 0.4% and F by 2.1%. If dead load com-
pression is not included in the computations f, is increased by 0.1%,
but F is decreased by 0.1%. Changes in the fundamental mode shape, as
indicated by the ordinates shown at the 76' and the 149' levels on the
tover for a 1'-0" deflection at the penthouse tloor, which is L3L' above
the base, are very small, and changes in the base shear and moment, Vg
and Mp, do not exceed L% if shear deflection, rotatory lnertia, and
dead load compression are omitted from the calculations.

The rotational and translational foundation compliance constants
in Table 2.3, KMB and KVB’ are shown as they were used in the computa-
tions, as the reciprocals of spring constents. Respectively Kvp and
KVB relate moment at the bottom of the barrel to rotation at that point
and shear at the bottom of the barrel to horizontal translation at that
point. It is shown later that horizontal translation depends on both
the moment and the shear at the base. Rotational foundation compliance
in this instance changes f, and the ratio of base rotation times height
of the tower divided by tip deflection, designated as S in Table 2.5,
by amounts roughly proportional to the value of the compliance constant
Kyp, the constants of proportionality decreasing to approximately 5%
of their original values when S reaches 0.33. The frequency ratio F
shows first a slight decrease and then an increase as KMB increases.

Translation compliance affects fl’ F, and the ratio of base trans-
lation divided by tip deflection, designated as T in Table 2.5, closely
in proportion to Kyp for values of T up to at least 0.035. The effects
of foundation compliance, on P and R, where P is the ratio of the change

in £y, divided by fj, and R is the ratio of the change in F divided by
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F, are summarized in Table 2.5. Also appearing in Table 2.5 are similar
data from & completely different cantilever beam, for which the effects_
of foundation compliance are tabulated in Table 2.4. The ratios P/T,
P/S, and R/T in Table 2.5 appear to be sufficiently consistent to be

useful for estimating cuenges in f. and F resulting from moderate found-

1
ation movements. The important relationships between these changeé and
the values of Kyp and K,y have not been developed here, however.

An spproximation of the ratio P/S for a uniform cantilever beam
with S very small can be made by equating the potential and the kinetic
energies of the vibrating beam. Let Y, designate the deflectionvof the
beam when the base rotation ©p is zero and let Y designate the total
deflectioﬁ when base rotation occurs. A study of the fundamental
Bernoulli-Euler mode shape of the uniform cantilever beam shows the

deflection in terms of the tip deflection, Ymt’ is approximately given

by n
LA (x/L)", n = 1.56. (2.11)

For values of S up to 0.06 or £0, computer mode shapes indicate
Y = Ym + QBx. (2.12)
The kinetic energy then is given by

K.E. « 1/2 | "paw®Pax « 1/2 j’l? Awdy2 [ 420 2zn+ls:ILdz

m
L 2 2 o
= PAWLL, [:1+ 2.3155__], (2.13)
5(5.12)

where 2z « (x/L) and the higher powers of S have been neglected.
The potential energy in the beam is given by

L
P.E. .J’Q Max 1/2 Mgy (2.14)
2E1 ’

where Mp is the base moment, and M, is the bending moment at any section,
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expressed by

M, LIJJOA“JE[Ymt( & /)" + eBi ][ﬁ - x} a§

= Ymt?Aw2L2r 1 o+ Sz° + S + 0 -z -S2 (2.15)
Ln+2 6 3 (o*l)(n+2) 1wl 2| .
If these calculations are carried out, there results
222 . )
P.E. « ¢ A Ymth)uL5 [ 0.0196b + 0.0hBSSé} +
2 KI
+1/2 Y AWfL? [ 0.2809 + © 33338] ) (2.16)
mt? . . B - .
Now 6 = BY i | 50 the second term in equation 2.16 becomes
L
1/2 Yemt?EAe w M5 5(0.2809) (——EL )
PAUJ L

Inasmuch as the frequency of vibration is close to the natural frequency
of a cantilever with & perfectly rigid mounting, the term in parenthesis
is approximately 1/12.36, anc Yhe potential energy becomes

P.E. = 92A2Yitwl,*L5 (0.01968) (1 + 3.6208). (2.17)
2 EI

Then solving for &)2 from equations 2.13 and 2.17

(e = 12.33ET (1 - 1.3058),

?AL

indicating that for small S,%J); is proportional to (1-0.65S5). The data
in Table 2.5 show that‘dl is closely proportional to (1-0.57S), indicat-
ing that the computation is rather sensitive to the assumed mode shapes.

Comparison of frequencies in rows h and 1 of Table 2.3 illustratas
the fact that if foundation compliance is present, the natural frequencies
are no longer proportional to the square root of the modulus of elasti-
city.

Small oscillations of the tower without the bridge attached were
observed in the firét part of February, 1962. Accelerations of 0.002 g

and less on the penthouse floor were excited by wind and by manual forcing.
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The observed frequencies, shown in row o of Table 2.3 were used to esti-
mate the foundation compliance constants, KMB and KVB' Unfortunately,
the level of excitation of the free standing tower was so low that it
was not possible to measure foundation motions, so, as noted in Table
2.3, the foundetion motions listed in row o aloﬁg with the frequencies of
the tower without the bridge attached were actually observed after the
bridge had been erected. Computer work shows that the base moment and
the base shear in the free-standing tower are smaller by approximately
3% and 8% respectively than the base moment and the base shear in the
tower with the bridge attached, if the foundation is considered rigid

in both cases. The use of the base motions shown in row o for the free-
standing tower is, therefore, reasonable,

In rov n of Table 2.3 calculated with the value of E measured by
the sonic method in July, the calculated frequencies are seen to agree
with the observed frequencies, but the base rotation is 85% greeater and
the base translation is 27% smailer than their observed values. The
concrete in the tower, howevér, was poured between July and December,
1961, so it is probable that the modulus of elasticity was lower in
February, 1962, when the frequengies were measured, than in July, 1962,
vhen the test cores were takenfa ) Ad justing E downward to 3.83 x lO6
psi, an 8§¢ decreace, yilelds ffequencies and base motions, row m,
matching the observations, and points out the fact that without an
accurate knowledge of the value of K, no check is possible between the
computations and the measurements. As mentioned previously, the sonic~
ally determined values of E showed a spread of lEﬁ% centered about the

average, and they pertained to only one pour of concrete at the base of
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the tower. Just how realistically the sonic value of E in small cores
represents the effective modulus of elasticity of the concrete in the
tower vibrating at its natural frequency, where the wave length is
several hundred times longer and the stress conditions are different,
has yet to be proved. Carefully conducted tests on free standing towers
will eventually reveal the answer.

In the direction perpendiculer to the length of the bridge, the
first two frequencies of the tower without the bridge attached were
observed in February, 1962, to be 1.73 and approximately 8.1 cps, the
second frequency less accurate than the first because, being excited
to a lesser extent by the wind, the records were shorter and usually
contained the fundamental along with the second frequency. After the
bridge had been erected, the observed base rotation and translation per
1'-0" motion on the penthouse floor were 7.2 x lO'h radians and
2.3 x 10-3 r4. respectively, compared with 7.7 x 10~% radians and
3.0 x lO'3 ft. respectively in the direction parallel to the bridge.
Using the observed base motions and the reduced value for E, 3.83 x lO6
psi, the natural frequencies in the direction perpendicular to the
bridge were computed as 1.77 and 8.2 cps slightly higher than the obser-
vations. To reduce the computed frequencies to the observed values
would require an increase of base rotation by approximastely 37% and an
increase of base translation by approximately 28%, thus giving some
measure of the accuracy of the computed compliance constants in this
case.

The amplitudes of displacement on the penthouse floor at the time

the frequencies of the free standing tower were measured were
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approximately 0.0004L", whereas at the time the base motions were measured
these amplitudes were approximately 0.016" in the direction parallel to
the bridge and 0.030" in the direction perpendicular to the bridge. To
examine the possibility of a trend in foundation compliance with ampli-
tude, base motions were measured when the penthouse floor motion in the
fundamental mode parallel to the bridge was approximately double the
0.016" mentioned above. The observed ratios of 6g and Yp to penthouse
floor motion at this increased amplitude were both smaller than their
previous values by T%. In the second mode of the tower it was found
that tripling the amplitude resulted in an increase in the ratios of

op and Yp to the deflection of a point 74' above the base by 2% and 4%
respectively.

At this point the accuracy of the field measurements should be dis-
cussed to shed light on the agreement between computations and meesure-
ments. Free vibration frequencies were measured in the f'ield by Mr.
Jerry Morrill and Mr. Ron Dobner of the U. S. Coast and Geodetic Survey
with & Sprengnether Blast Recorder, no. 1720, with its own timing lines
at 0.2 seconds and with an auwxiliary time signal at 0.50 seconds from
a very accurate clock. The two timing signals showed always perfect
agreement to the naked eye. Any errors in the observed frequencies
therefore, are due to reading the record and it is felt that the observed
(frequencies of free vibrations are in error by no more than 0.02 cps.
Over the full length of decaying records of the type in Figure 2.12,
Appendix V, very slight increases in frequency were noted at the smaller
amplitudes, approximately 0.0l cps difference between the ends of the rec-

ord. These variations could be caused by slight gusts of wind or by a
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modulus of elasticity of the concrete that decreases with increasing
amplitude. The reported frequencies of free vibrations are those
measured at the smallest amplitudes.

Base motions of the tower with the bridge attached were measured
during the machine forced vibration tests with accelerometers placed on
top of the tower foundation against the inside of the tower walls. 1In
computing the base rotation, GB’ it was assumed that the cruss sectlion
of the tower at the foundation level remained plane during rotation.
The level of the accelerations used to determine the base rotation was
approximately L x 10'53, much below the lowest level at which a calibra-
tion was ever attempted. This level of acceleration produced a trace
of approximately 0.16" double amplitude, a value which was probably
read from the oscillogram with + 5% accuracy. Six separate measure-
ments of vertical base motions, five on one day and one on another day,
for O, close to the fundamental frequency, showed a spread from

4

7.l'x 107" to 7.8‘x lO'l‘L radians per foot of penthouse floor deflection

in the direction parallel to the bridge. The value used, 7.7 x 10‘“,

vwas measured the most carefully and by the most reliable procedure.

Only one measgurement was made of GB in the direction transverse to the
bridge. Trace amplitudes of horizontal base translation were only 0.07"

to 0.09" peak-to-peak, so the reading error might be as much as + 10%.

The measurements of horizontal bace translation showed a gpread of 10%
centered about the average. Without actually calibrating the measuring
equipment at this low level of measurement the accuracy of the measurements

is of course in doubt. A comparison of these records of base motion with

some records made simultaneously with the Sprengnether instrument showed
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agreement within 3%, but the Sprengnether records were only 0.08" peak-

to-peak, so the reading error might be much larger than 3%.

E. Vibrations of the Entire Structure

Adjusting the Parameters

In Teble 2.6 rows (a) through (e) show the effects of foundation
compliance, bridge inertia, and bridge sliding on two computed frequen-
cies and on the computed fundamental mode shape of the tower with the
bridge attached. The modulus of elasticity used in these computations

wvas the average sonic modulus, 4.18 x 108

psi. The foundation movements
used were those observed in the fundamental mode under the (0 - 1) load-
ing condition, and the compliance constants determined for this condition
were then held constant when the higher frequency foqp was computed. When
bridge sliding was introduced, row (e), it was found necessary to alter
the foundation compliance constants slightly from their values in row
(4) in order to maintain the proper ratios of base motions to motions on
the penthouse floor. As mentioned previously, bridge sliding was repre-
sented in the computations as the deflections of springs placed between
the ends of the bridge spans and their supports, the sliding motion being
proportional to the longitudinal forces transferred at these points. The
actual sliding movements associated with the (0 - 1) loading condition
are described later.

The frequency fl in Table 2.6 is the lowest frequency of the struct-
ure. The frequency designated fTE is the frequency of the second mode
in which the tower plays a significant part. Two other modes, primarily

of bridge motion, occur with frequencies between fy and fTQ’ but inas-

much as the tower is the element of primary interest here, sz is used

for meking comparisons.
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By comparing row (b) of Table 2.6 with row (a) it is seen that
neglecting the mass of the bridge and of T2 in the calculations increasesg
the fundamental frequency of the structure by 8%, decreases the deflections
at the centerlines of the bridge spans by 30% to 40%, but increases foo
by only 0.8%. The chief effects of foundation movements of Tl are seen
from rows (a) and(c) to be a softening of the mode shape of T, below the
bridge connection, a 4% decrease in fl, an 8% decrease of fpps 80d &
softening of the deflection curves of the bridge spans. Base motlions
of Tp are seen from row (d) to have a very small effect on the structure.
Bridge sliding, row (e), has a very minor effect in the mode shape of
the tower, but markedly reduces the centerline deflections of the bridge
spans, and reduces f, by 0.0k cps.

Row (f) shows the observed frequencies and the fundamental mode
shape for the (0O - 1) loading condition. These data should asgree with
rovw (e) if the measurements were exact and the idealization of the
structure in the computations were perfect. The computed frequency fl
is seen to be 1.5% high and fpo 1s 4L.2% high. The computed mode shape
differs from the observed mode shape generally by amounts within the
consistency of the field measurements, + 5%.

In attempting to explain the discrepancies between rows (e) and (f),
principally the discrepancy in ng, several observations can be made
concerning the idealization of the structure for computational purposes.
First, no reduction in the moment of inertia of the tower was made to
allow for the gates in the side of the tower. If I is reduced by the
product of the cross sectional area removed times the square of the
distance to the neutral axls, assumed through the center of the cross

section, then over eight 2'-0" sections in T,  the moment of inertia
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should be reduced by approximately 13%. Since the openings are lined
over 12" of the tower wall's thickness with a steel ring it is question-
able if this reduction in I is actually justified.

Second, the moment of inertia of the cross section through the pent-
house door was computed by subtracting, over the height of the door,
the product of the area removed by the door times the square of the dist-
ance from the tower centerline. This results in a value of I over the
height of the door slightly too low, but realistically, the reduction
should extend for some distance above and below the door. Extending the
reduction for 2'-0" above and below the door, and decreasing I by 13%
over eight sections in Tla results in fl and fTQ having computed values
of 2.13 and 8.35 cps, both closer to the observed frequencics.

Third, the representation of the trussed members by solid flexural
members results in sizeable errors in bridge deflection under static
loading, as was shown previously. The effect of the bridge and of T,
on the frequencies in which the tower plays a significant role may be
seen by comparing row (a) of Table 2.3 with row (a) of Table 2.6, the
base of Tla being rigidly fixed in both cases. It is seen that connect-
ing the bridge to the tower increases f; by 16% and reduces fp, by less
than 2%. Errors in representation of the trussed members, therefore,
can be expected to result in errors in fi and in the bridge deflections,
but the effect on ng will be small. A comparison of rows (c) and (e)
of Table 2.6 shows that bridge sliding has a very small influence on fpo-

A fourth observation is that the foundation compliance constants
were assumed in the second mode to remain unchanged from the values they
had in the first mode. It has been mentioned previously in connection

with vibrations of the free-standing tower, that slight increases and
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slight decreases in base rotation and base translation were noted with
increasing load level and no definite trend could be identified. Under
(O - 1) loading at the frequency fqn, base rotation and base translation
of Tl were approximately twice and three times their respective values

under (O - 1) loading at the frequency f sO no large changes in the

l’

compliance constants at f should be expected. Allowing the base

T2
translation constant KVB to increase by 10% reduced the frequency sz
by only 0.016 cps.

Finally, the effective value of the modulus of elasticlty might
reasonably vary by as much as 20% from the value determined by the sonic
method from the three cores taken near the base. The constancy of E
with stress level, however, is suggested by the constant ratio between
amplitude and force level at frequencies at some distance from the
natural frequencies, and by the relatively constant fundamental freguency
at loadings between (O - 1) and (O - 4). Reducing the sonic value of E
by 2% and using the reduced values of I mentioned above for Tl yields a
value for fl of 2.11 cps, agreeing with the observed value, and a value
for fT2 of 8.27 cps, 2%% high. The fundamental mode shape associated
with these frequeﬁcies, showing slightly better agreement with the ob-
servations, is shown in row g of Table 2.6.

Although other adjustments, deviating from the known and assumed
properties of the structure, could possibly result in all the quantities
tabulated in Table 2.6 agreeing with the observations, the lnlention
here is to indicate what accuracy might be attained using known and
measured properties of the structure. With the exception of a later

modification of base translation, no further adjustments were attempted.
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(2)

In the report of the test of the 0ld Encino Reservoir towerJ
which was replaced by the present structure, it was stated that the
observed amplitude at midheight in the fundamental mode was approxi-
mately twice its computed value. Inasmuch as the computational method
used here is very similar to that used for the old tower, the good agree-
ment here between the computed and observed values at midheights suggests

the discrepancy was the result of some instrumental difficulty.

Vibrations of the Entire Structure - Computing the Natural Freguencies

In the description of the mathematical technique it was stated that
the natural frequencies were found by trial and that the natural fre-
quencies were those for which the moment, MF’ at the top of le, called

A, went to zero when all the other boundary and Jjoint conditions had
been.satisfied. A plot of MFV frequency 1s shown in Figure 2.17 for

the structural conditioﬁs associated with row (e) of Table 2.6. The
five natural frequencies and their associated mode shapes derived from
the structural conditions of row {(g) arc shown in Figure 2.18. The
frequencies are identified as fy, fBl’ fBE’ fT2 and fBS’ the subscript

B identifying those modes in which the bridge plays the dominant part,
and the subscript T identifying those modes in which the tower is active.
The computed mode shapes are shown by solid lines in these figures
whereas observed ordinetes are shown by small circles.

The AV £ curve (A = Mp) in Figure 2.17 looks unusual with its
many branches extending to infinity, but it can be explained on the
basis of forced vibration of the undamped structure., Consider the
inverse problem of finding the shear, VB, at the base of Tla resulting

from & moment, Mp « (L*sin 0 t), applied at the top of T1p. Since the
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structure is undamped, VB and all other forces and motions in the struc-
ture will always be in phase with MF if & minus sign 1s attached to the
amplitudes of those quantities which have a phase difference of 180°.
Thus, the conditions for equations 2.1 through 2.6 are established,
namely that all parts of the structure are moving in phase. The ampli-
tude of Vg will vary from very small values at some frequencies, up to
infinite values at all the natural frequencies of the structure, and,
if desired, a curve of this response could be plotted with the sign of
the amplitude of VB changing each time & natural frequency is crossed.
For discussion this curve will be called the signed resonance curve,
Consider now the question, "What values of My will result in the
agplitude of VB being always equal to unity?" It is seen that the
answer is given by values of Mp which are the reciprocals of the ordi-
nates of the signed VB resonance curve. In the description of the tech-

nigque used for the Encino Reservoir structure it was stated that V, was

B
always set to unity, so Figure 2.17 represents simply the reciprocal of
the signed resonance curve of Vg due to My = (L+sin t). If the nega-
tive arms of Figure 2.17 are plotted positively, the curve becomes the
reciprocal of the resonance curve plotted in the usual manner. An
infinite value for A on this particular curve simply means tﬁat VB goes
through zero at that particular frequency.

The very steep zero crossings in Figure 2.17 might easily be missed
unless the frequency range were scanned very carefully. These sharp
breaks in the curve are associated with modes in which Mp and VB have
little influence. In other words, the application of MF produces very

little of these modes except at their own frequencies, and the occurrence

of these modes produces a very small amount of VB. As an example,
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consider the case in which the bridge is on rollers at zero eccentricity
from the centerline of the tower. In this case, application of MF at

the top of the tower does not excite the bridge at all, and VB results
‘only from the excitation of modes in the tower. If a sufficiently

broad scale in f is used there is no difficulty in plotting the resonance
curve and 1ts reciprocal. If then & slight eccentriclity of the bridge
reaction from the centerline of the tower is allowed, the resonance
curve of Vg would look very similar to the previous case, except that
when a frequency involving the bridge is spproached VB would rapidly
become infinite. The more the coupling between the bridge and the tower,
the more gradual the approach toward infinity and hence the flatfer and
more obvious the zero crossing of the A v f curve. For weakly coupled
structures, the best technique for finding all the modes seems to be

to write the equations so that the Quantity made unity and the quantity
called A.appear on opposite sides of the weak couplings. To be certain
that all the modes have been found it might be necessary to try several
locations for these quantities. Figure 2.19 shows a N v f curve for the
same structure with Vg again set equal to unity, but A ie now Mg, the
moment at the right end of Bl' The crossings here are more easily
recognized from a coarse scanning of the frequency spectrum. The natural
frequencies indicated in Figure 2.19 ére Jjust the same as those in
Figure 2.17.

In connection with the description of the method it was pointed out
that the response of the structure to a sinusoidal force at any point
could be obtained by revising the set of simultaneous eqﬁations to include
the change of shear, moment, or thrust across the section at which the

force is located. The natural frequencies of the structure would then,
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of course, be indicated by the frequencies at which the amplitudes

tended toward infinity, but overflow in the computer in the vicinity

of the natural frequencies might cause difficulty in accurately defin-

ing the frequencies. At the expense of increasing the number of equations
to be solved, the desired results could still be obtained and the natural
frequencies could be accurately found if the following procedure were
followed. OSuppose it is desired to find the response of a point on the
bridge, resulting from the shaking machine operating on the penthouse
floor. If the bridge is cut at the point where the response is desired,
and the deflection on the left end of the member on the right side of the
cut is called unity, six new equations and six new unknowns have been
introduced, inasmuch as the shear at Lhe base of Tla must now be consider-
ed an unknown. Then if A is made to be the change in shear or moment

at the top of Tyg caused by the shaking machine, D now answers the
question, "Whet shaking machine force is neceseary to produce unit deflec-
tion at the selected point on the bridge?"” The A v f curve is thus the
reciprocal of the resonance curve sought. If only general bridge response
is desired, the shear at the end of one of the spans might be set to

unity and no additional equations are involved.

Vibrations of the Entire Structure - Experimentael Resonance Curves and

Mode Shages

Resonance curves of the acceleration on the penthouse floor for
several force levels are shown in Figure 2.20. Resonance curves for
three points on the bridge and for a point on the side of the tower
84'-0" above the base are shown in Figure 2.21, Appendix V. In all

cases the force was applied on the penthouse floor in the direction of
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the length of the bridge. The accelerations on the tower were measured
in the direction of the length of the bridge, whereas the accelerations
plotted for the bridge were measured in the vertical direction. Dif-
ferent symbols used for data points on any one curve indicate that the
data were taken on different days.

Although there is scatter in the penthouse floor date around the
peaks of the fundamental frequency, f;, end the pesk for the (0 - 4)
loading condition is broad, there appears to be no change in fl’ 2,10~
2,12 cps, for loading levels between (0 - 1) and (0 - 4). Under the
light loading (L.L.), approximately 29% of the (0 - 1) loading, fy
occurred at 2.16 c¢ps as shown by the detailled plot in Figure 2.22.
These data, representing accelerations on the penthouse floor, were ob-
tained when some temporary friction clamps to prevent bridge sliding
at the center pler were in place across the joint between B1 and Bzg
The effectiveness of the élampa was not adequately evaluated, howsver.
The computations in Table 2.6 indicates an increase of 0.04 cps in £y
if bridge sliding is prevented, suggesting that less sliding occurred
under the (L.L.) loading with the clamps in place. At accelsration
levels of 1% to 10% of the acceleration produced by the (0 - 1) loading
at the fundemental frequency, the observed frequency of free vibrations
varied between 2,16 and 2,20 cops, the latter value higher than would be
expected if no bridge sliding occurred. Possibly an increasing valus
of the modulus of elasticity at lower stress levels could account for
the higher frequency, but this is in contradiction to the invariance
of £, at loadings from (0 - 1) to (0 - 4). The increase in the funda-
mental frequency with lower stress level which was noted in the test of
the old Encino.intake tower was attributed at that time to an increase
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T

in E at a lower stress level.

Only once was f,, under the (O - 1) loading, observed to vary up
or down by more than 0.0l cps between July eand October, 1962, and this
is believed to result from an error in reading the frequency or else to
a8 sudden change in the line voltage supplying the amplifiers. The
slightly higher values of fl’ noted on the resonance curves for thé
centerlines of Bl and BE’ Figure 2.21, Appendix V, are the result of this
data believed to be in error.

Close examination of the acceleration records from any three points

on the structure at the frequency f sensed and recorded with elements

1
of approximately 100 cps natural frequency, always showed phase agree-
ment that looked perfect to the eye. Although the unsteady paper drive
and the presence of high frequency components in the records made accur-
ate phase measurement 1lmpossible, at the frequency of the highest
amplitude, 2.113 cps, the response of the structure was measured to lag
the force by approximately 114°, of which 4° might be accounted for in
the accelerometer and the recording galvanometer. Tests of the ampli-
fier itself by the method described in Appendix I showed phase lag of

5° in the amplifier at 15 and at 30 cps. The pulse which indicated the
phase of the force, recorded with a galvanometer of 3000 ¢ps natural
frequency, was probably not out of phase by more than + 2° due to improp-
er placement of the magnetic pickup which produced the pulse. Since the
low level of damping in the structure could not account for this amount
of phase lag at the peak amplitude, even considering the fact that the
trace amplitudes increase as the fourth power of the frequency, no

explanation is readily apparent. Phase leg of 90° occurred at approxi-

mately 0.0l cps below the frequency of the peak, where the amplitude was
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3% to 4% lower than the peak amplitude. A record of accelerations

at the frequency f, is shown in Figure 2.23 (a), Appendix V, the top
tracé being measured at theb8h‘-0" level on the side of the tower, the
center trace at 146'-8" above the base, and the bottom trace on the
penthouse floor. The bottom trace represents an amplitude of approxi-
mately 0.0075 g. The pulse indicating the phase of the force occurred
90°* after the force reached its maximum. The traces in this record
contain more high frequency components than were usually present be-
cause the chains on the shaking machine had Jjust been tightenéd. The
mode shape at the frequency fl is illustrated in Figure 2.18 (a).

At the second peak, frequency fBl’ on the bridge resonance curves,
the mode shape was Jjudged from the oscillograms to be one in which the
bridge spans were moving up and down in opposition to each other at 90°
phase with the motion of the tower, which still showed chiefly the
fundamental mode. That this was essentially the case is seen from
Figure 2.18 (b), where the computed motion on the penthouse floor is
only 1% of the motion on the centerline of the bridge spans. The ob-
served frequency fBl was 3.12 cps compared with the computed value of
3.0k cps. The nature of this mode is indicated by the fact that the
computed frequency of the bridge with no end restraint was given as
3.03 cps. In this mode the bridge is vibrating almost independently of
the tower, its total length between the abutment and the tower remaining
almost constént throughout a cycle. The horizontal force between the
bridge and the tower in this mode is only approximately 2% of the hori-
zontal force in the fundamental mode for equal centerline deflections
of Bj.

Because the resonance peaks on the two spans did not occur at
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exactly the samc frequency due to the presence of the fundamental mode,
and the peaks were very sharp, it was not possible to define a mode
shape of the bridge at the frequency fBl'

The field measurements were carried out before the computer work
was completed, and this fact very well illustrated the advantages of
carrying out both analytical and experimental investigations of the
dynamic properties of & structure. The resonance peak at 3.12 ecps was
observed in the field, but it was only through this prior knowledge of
its existence that 1lts zero crossing in Figure 2.17 was found. On the
other hand, the resonance at 3.68 cps, fB2’ waé interpreted from field
observations to be a torsional mode on Bl’ and it was not until the
computer showed otherwise that it was realized that a natural mode
did exist in the plane of the structure.

Standing on the bridge, the sensation at 3.68 cps was that of tor-
siun, so in addition to measurements of accelerations on the penthouse
floor and on the centerlines of the bridge spans, which showed fairly
good phase agreement, measurements were made on both trusses at the mid-
span of Bl. A curve of the differences of these two accelerations
showed very definitely a resonance in torsion at 3.68 cps on Bl’ but one
such measurement on B2 at the resonant frequency showed very little
torsion. Just why the torsion should have induced large vertical motilons
midway between the trusses was not clear.

Probably the observed torsion on B, is the result of the resistances
to longitudinal motion on the ends of one truss being unequal to the
resistances on the other truss. Squeezing of the bottom chords then

tends to cause one truss to arch upward more than the other. The trusses
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of Bl were observed to be practically free of torsion at the fundamental
frequency of the structure, however, an observation which appears to

be contradictory to the suggestion of unequal sliding resistances on the
trusses. Using the forces and displacements given by the computer for
the modes at the frequencies fy and fBE’ it was calculated that there
occurred in the field under the (0 - 1) loading at the frequency fBE,

a longitudinal force in Bl of approximately 1.5 times the lgngitudinal

force that occurred at the frequency f This does not seem to be a

1
large enough difference to account for the torsion. The only other
significant difference between the two cases is that when the bottom
chord of the truss is compressed in the mode shape at frequency £1,
rotation of the truss puts increased pressure on the outer edges of the
bridge bearings, whereas when the truss is compressed at the frequency
fpo, the pressure is on the inner edges of the bearings. Whether this
change of the location of pressure is significant is not known. Al-
though it is not very obvious from Figure 2.18 (c¢), the bending moment at
the frequency fBZ is negative on the ends of the bridge spans. This mode
closely corresponds to the first mode of a bridge span with the ends held
a fixed distance apart. The frequency reported previously for this sup-
port condition was computed to be 3.78 cps.

In July, 1962, fpp was determined from torsion measurements on By
to occur very close to 3.60 cps, yet in October the peaks of both vertical
acceleration and of torsion occurred at 3.68 cps, an increase of 0.08 cps.
The frequency fB3 increased by approximately 0.07 cps over this period,
but fp; varied by no more than 0.0l cps, and f,; showed no change at all.

These observed increases of fB2 and fB3 were thought to be the result

of an increase in the sliding resistance between July and October due to
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corroesion of the sliding curfaces. To illustrate the effcet of sliding
resistance on the frequencies, the springs at the ends of the bridge
spans in tﬁe computer model of the structure were made infinitely stiff,
and all the other constants were held unchanged. The frequency f‘l wa§

found to be increased by 0.04 cps, by 0.0l cps, fpo by 0.22 cps,

fBl

fpo by 0.01 cps, and £ by 0.05 cps by the increased sliding resistance.

B3
These computed increases do not in all respects agree with the observa-
tions, indicating that the idealization of the sliding phenomenon by the
deformation of elastic springs is not accurate for a range of conditions,
and suggesting that some other unrecognized changes took place during

the three months. It will be interesting to observe the changes in the
frequencies of the structure as time passes, although the filling of

the reservoir with vater will add & coumplicating factor.

The resonance peak on the bridge at 3.88 éps was determined from
field observations to result'from Vibrations in the direction perpendic-
ular to the bridge, and a lateral mode shape of the bridge, shown later,
was measured under the longitudinal excitation. The computer did not
. indicate a resonance in the vicinity of this fregquency.

At the frequency fmpo, 8.09 cps, the accelerations on the penthouse
floor lagged those measured at the 84' level by approximately 20°, the
reason being, of course, that the record on the penthouse floor contained
a much larger percentage of first mode than the record made close to
the midheight of the tower. The resonance peak near the midheight ocur-
red at approximately 8.11 cps, although variations of 0.03 c¢ps on
either side were sometimes observed. The records allowed the mode shape

of the tower to be reasonably well determined, but the records from the
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bridge were in general very rough at the higher frequencies, often
hardly sinusoidel, so that what is plotted as an observed mode shape
of the bridge at fTQ’ Figure 2.18 (d), was obtained by using a good
amount of Jjudgment in interpreting some of the records. An example
representative of the poorer quality of the records at the higher
frequencies is shown in Figure 2.23 (b), Appendix V, for the frequency
8.13 cps. The upper trace shows vertical acceleration at & point on
Bp, 13 panels from TQ’ the middle trace is from & point on Bl’ five
panels from Tl,'and the lower trace shows horizontal acceleration on
the penthouse floor. A record of better quality, made on a different
date, is shown in Figure 2.23 (c), Appendix V, for the frequency 8.12
cps. Here the upper trace is from & point on Bl’ five panels from Tl.
This was recorded with & galvanometer of 18 cps natural frequency,
whereas all the other traces were recorded with galvonometers of 100
cps natural frequency. The center trace is from a point on By, five
panels from To, and the lower trace is from the penthduse floor. Rat-
tling of the bracing elements on the bridge occurred at the higher
frequencies and is presumed to be responsible for some of the roughness
in the records. The quality of the records at the higher frequencies
was not constant from day to day.

The bridge mode at st was interpreted in the field as being one
in which the bridge was vibrating independently of the tower. The fre-
quency observed in October, 1962, was 8.90 cps, whereas in July the
frequency was observed.to be approximately 8.83 cps, increased resistance
to the bridge sliding being assumed to be partially responsible for the

change in frequency. Using the spring constants for bridge sliding



determiped for the fundamental mode, the computed frequency fB3 was
found to be 9.41 cps, 6% high, and the computed mode shape, Figure 2.18
(e), is seen to have drastically different relative amplitudes from the
observed mode shape. The effect of the bridge springs on the relative
amplitudes of the two spans was investigated by making all the bridge
springs infinitely stiff, which resulted in the amplitude of B, only 16%
greater than the amplitude of Bg. It is probable then that bridge
sliding resistance different from that which was assumed at this fre-
quency is responsible for the large difference between the computed
and observed mode shapes. The fact that the computed second frequency,
9.46 cps, of one bridge span supported with one end on rollers as in
Figure 2.6, is higher than the observed frequency of the bridge with
some ehd restraint, 8.90 cps, indicates that the flexural beam repre-
sentation of the truss is significantly in error in the second mode.
Although no computations were made for vibrations of the structure
in the direction perpendicular to the bridge, accelerations were measured
on the penthouse floor for the force applied transversely, and the mode
shapes of the bridge were determined for vibrations in the lateral direc-
tion. »The resonance curves for lateral acceleration on the penthouse
floor are plotted in Figure 2.24, Appendix V, and the lateral mode
shapes of the bridge are shown in Figure 2.25. The two strong reson-
ances on the pentﬁouse floor, at 1.76 and 8.13 cps for the (0 - 1)
loading, are very close to the frequencies observed for the tower with-
out the bridge, 1.73 and 8.1 cps, indicating that the effect of the
bridge is not very great at these frequencies. Under the (L.L.) loading

the fundémental of the tower in the lateral direction was found to be
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at 1.76 cps and the second mode of the structure was found at approxi-
mately 8.17 cps. The modes at 1.43 and 1.56 cps are essentially modes
of the bridge, and they involve larger relative motions of the bridge
than the mode at 1.76 c¢ps. Because of the sharpness of the two lower
resonance peaks considerable scatter was present in the mode shape data,
the averages of which aré shown in Figure 2.25. As was mentioned pre-
viously, the mode at 3.88 cps was determined when the shaking force was
applied parallel to the axis of the bridge. The cause of the uneven-
ness in the resonance curves in Figure 2.24, Appendix V, at 2.93 cps

was not determined.

Vibrations of the Entire Structure - Damping

Equivalent viscous damping determined from the decay of free oscil-
lations of the first mode of the tower without the bridge attached was
found to be approximately 0.007 critical at an average acceleration level
on the penthouse floor of 0.0004 g. With the bridge attached, at an
average acceleration level of 0.00043 g in the direction of the length
of the bridge the damping was measured from free vibrations as 0.0118
critical and at 0.00068 g average amplitude the damping increased to
0.0126 critical. Using the method reported by Hudsonfe) in which the
demping is determined by the ratio of the peak amplitude to the amplitude
at the horizontal tangent of an acceleration resonance curve resulting
from a force which increases as the square of the frequency on a onc
degree of freedom system, the equivalent viscous damping in the first
mode for the (O - 1) loading condition in the direction of the length

of the bridge, approximately 0.0063 g amplitude, waes determined to be

0.016 critical. For the (O - 4) loading, 0.0ll g amplitude, the damping
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was found to be 0.036 critical. The maximum dynamic stress at the base
of the tower under the (O - 4) loading was calculated to be only 7.5
psi, so the concrete always remained in compression. These data are
tabulated in Table 2.7 along with data from two other towers. No rela-
tionship between damping and the ratio of tip deflection to height among
the three towers can be seen from Table 2.7.

Demping in the mode at 8.09 cps, fTQ’ is more difficult to determine
because of the presence of the first mode and the presence of the mode
at 8.90 cps which obscures the horizontal tangent at fqp, but if the
curves are sketched in, the amplitude ratio indicates damping around
0.018 critical.

Damping in the modes in whlcn. the bridge plays the dominant role is
difficult to determine because of the superposition of response of the
several modes. It is seen that just above 8.90 cps, fBS’ the response
at panel point 5 on By is lower than the response just above 8.09 cps,'
resulting from & phase difference of 180° in the two modes at this point.
Sketching in the curves, and taking into account the phase difference
indicates damping in the mode at 8.90 cps of approximately 0.018 critical.

In the direction perpendicular to the bridge, the damping for the
(0 - 1) loading at 1.76 cps is approximately 0.010 critical, and for the
(0 - 2) loading it is approximately 0.015 eritical. At 1.56 cps, &
mode principally of bridge motion, the damping appears to be less than
0.0l critical. At 8.13 cps under (0 - 1) loading, sketching in the

curves indicates damping of approximately 0.028 eritical.

Vibration of Entire Structure - Foundation Motions

Rotation and translation of the base of the tower were discussed
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in connection with vibrations of the free-standing tower. It was found
that under the (0 - 1) loading in the first mode, the rotation and the
horizontal translation, measured on top of the foundation pad, were both
in phase with the motion of the tower above. Every set of measurements
for vertical translation, however, indicated that in the first mode the
center of the foundation moved downward when the tower deflected toward
the dam, just the opposite of the expected. The vertical force at the
base of Ty resulting from the bridge reaction on the tower is given'by
the computer as 1 x 10°1bs. uplift per foot of penthouse floor deflec-
tion toward the dam, when uplift is prevented. If the sandstone is

6

assumed to have a modulus of elasticity of 2 x 10~ psi and Poisson's

ratio of 0.3521)and the foundation pad is assumed rigid, then using

the data from Reference 20 the vertical uplift of the base should have
been roughly T x 10'6 feet per foot of penthouse floor motion, and

should have lagged the applied force on top of the pad by 3° in the first
mode. The ouserved motion, obtained by taking the difference of vertical
accelerations on opposite sides of the foundation pad inside the tower,

was of the order of 6 x lo’“

feet per foot downward. The records at
the base were very small, so the magnitude of this vertical motion
showed considerable scatter, but the sense was always consistent. For
vibrations in the lateral direction, the vertical accelerations on
opposite sides of the base were of equal megnitude, indicating no
vertical motion of the center of the tower's base.

The only reasonable explanation of this contradiction is that the

21

underlying rock is not of uniform rigidity or that the 733" diameter
pipe which penetrates the l0'-0" thickness of the foundation pad suffi-

ciently lowers the stiffness of the one side of the pad so that, under
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the moment at the base of the tower, deformation in the>pad itself
shifts the center of rotation of the top of.the pad away from the dam.
From phe observations, the center of rotation was shifted approximately
three feet from the center of the tower. Because of this observed
unsymmetrical deflection, no vertical motion at the base of T; was
allowed in the computer solution.

Rotation at the base of Ty was responsible for only 9.3% of the
deflection at the top of the tower, whereas it was reported that almost
Lo% of th; top deflection of the old Encino tower was caused by base
rotationf ) Although the sites of the two towers are approximately
700 feet apart and it is not known if the rock at the two sites has the
same characteristics, it is interesting to compare foundation moduli
computed for the two cases. If both foundation pads are regarded as
rigid discs, the quantity to be compared is ML/QR3, where M; is the
moment acting at the bottom of the disc, © is the rotation, and R is
the radius of the discEQO)In the foundation of the new tower, M; 1is
approximately 10% greater than Mp, the moment on top of the pad, the
difference being equal to Vg times the pad thickness. In the foundation
of the old tower this increase is approximately T%. The value ML/@R3
is roughly 7.3 x lO7 lbs. per sq. ft. for the old tower, whereas for
the new toﬁér the value is 3.8 x lO7 lbs. per sq. ft., little more
than half as great.

That the foundation under the old tower appears more rigid is not
surprising inasmuch as the foundation stiffness considered here act-
ually includes the bending and shearing stiffnesses of the pads. The

pad under the new tower, 48 feet in diameter by 10 feet thick, is much

more flexible than the pad under the old tower, which was 22 feet in
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diameter by 5 feet thick and supported & tower barrel 17 feet in out-
side diameter. It should be kept in mind that only one measurement
under questionable conditions supported the value of base rotation
calculated for the old tower, and the difference in frequencies noted
for the old tower in two perpendicular directions indicates that the
outlet pipe, which was not considered in the calculations, affected the
base motions. However, if base rotation under the old tower had been
smaller than assumed, meaning that less than 40% of the top motion was
caused by base rotation, then the foundation under the old tower would
appear stiffer here, further emphasizing the flexibility of the pad under
the new tower. The modulus of elasticity calculated for the rock under
the old tower, assuming & perfectly rigid pad, is of the order of

(21) |
5 x lO5 psi, rather low.

Until more experimental evidence is gathered and until the problem
of a thick elastic disc, with a rigid center support, resting on an
elastic half-space is solved, the following approximetion for comparing
foundation moduli from base rotations is proposed. Through the founda-
tion pad insert an imaginary cone of central angle 90*, whose inter-
section with the top of the pad coincides with the outside line of the
tower on the pad. Use the radius of this cone at the bottom of the pad
as the radius of the rigid disc referred to in Reference 20, unless the
actual radius of the pad is smaller. Applying this suggestion to the
foundation of the new tower gives & value for ML/OR3 of 6.6 x lOTLb/ftE,
closer to the value found for the old tower. Rotation © here, of course,
includes the suspected internal deformation of the pipe through the base.

Horizontal translation of the pad under the new tower, resulting

from base shear in the first mode, should have amounted to roughly
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1 x 1073 feet per foot of penthouse floor motion, on the basis of the
modulus of the rock estimated from the test of the old tower. If the
rock surface had rotated the 7.7 x lO‘u radians per foot observed on
top of the pad, the horizontal translation on top of the pad resulting
from this rotation would have amounted to 7.7 x 10-3 feet per foot.
The measured translation was only 3 x 10-3 feet per foot, however,
suggeoting that the deformetion within the cutlet pipe raised the
center of rotation to within 3' of the top of the pad and/or submer-
gence of the pad in the surface of the rock resulted in raising the
center of rotation. The data gathered from vibration in the transverse
direction, in which the outlet pipe should have little effect, suggests
the latter possibility. In that instance, oy and Yy had observed
values of 7.2 x lO’u radians and 2.3 x 1073 feet respectively per foot
of penthouse floor motion. The shear and the moment at the base in
the transverse vibration probably differ by no more than 10% of their
respective values in the direction parallel to the bridge, and using the
values for the latter case results in the center of rotation being
located approximately 2' below the surface of the pad. A check with -
the resident engineer on the construction revealed that the sandstone
was excavated to a level one foot above the finish top of the pad, the
pad excavation was made and the concrete was poured, and finally the
sandstone around the pad was trimmed flush with the top surface of the
pad. The classical problem here, then, is one of an elastic disc with
a rigid center support, embedded in the surface of an elastic medium.
The preceding paragraphs have indicated that horizontal translation

at the bottom of the barrel is more a function of base moment than of
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base shear. Further evidence of this was obtained by comparing relative
base motions in the first mode of the tower with the relative base
motions in the mode of frequency fqp. The magnitudes of base rotation
and translation observed in the field under (O - 1) loading at fq, Were
approximately twice and three times their respective values at fl, but
as previously mentioned, tests at different amplitude levels in the
two modes were contradictory in predicting any trend in the relative
movements. In any case, linearity of the rock within 10% is expected
at these higher amplitude levels. In order for computed relative base
motions in both modes to agree with the observed relative base motions
not only must the picture of foundation conditions be correct, but also
the computer's model of the tower must be correct, so such & comparison
is a severe test of the whole analytical procedure. Observed base
rotation and translation at fmp Were L.2 x 10~3 redians and 2.8 x 1072
feet per foot of motion at a point 84'-0" above the base.* The computed
values, based on translation at the base being proportional to base
shear only, were L.3 x 10'3 radians and 5.2 x 10'2 feet respectively,
the rotation showing good agreement, but the translation almost double
the observed value.

A new compliance constant was then introduced, Kyyp, relating base
translation to base moment. The constant Kyp was set to zero, all other
constants were left unchanged, and KMXB was then given a value so that

the computed base motions in the first mode agreed with those observed

under the (O - 1) loading. Then the mode at fqp was computed with this

*The point B4'-0" above the base was used as & reference for Lhe mode of
frequency fro because the motion at this point was less affected by
fundamental mode content than the motion on the penthouse floor.
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value of Kyyy, &nd @y and Y, in this mode were found to be L.3 x 1073
radians and 1.7 x 1072 feet per foot of motion at the 84' level. The
computed value of YB here is 32% small, whereas when base translation
was assumed proportional to base shear only, the computed value of

Yp was 85% greater than the observed value at frequency f The fre-

T2*
quency fT2 was raised by 0.1l cps, to 3.6% above the observed, by this
change but the mode shape at sz showed slightly better agreement with
the observed mode shape. Thus it is evident that relating the base
translation to some combination of the shear and the moment at the
lower end of the barrel can produce computed relative base translations
and rotations that dagree with the observations in both modes, but the
computed second frequency of the tower will be approximately 3% too
high. In the light of this information, it appears that the effective
modulus of elasticity of the tower is perhaps 6% below the assumed
value of 4,10 x 106 rsi and the bridge is slightly stiffer than has
been assumed in the first mode. These two changes would bring the
computed frequencies fl and fT2 and their mode shapes into agreement
with the observations. Other changes to the bridge would be necessary
to bring the computed bridge modes and frequencies into agreement with
the observations, however.

Measurements to detect if base rotation occurred about axes parallel
and perpendicular to the ocutlet pipe, which made an angle of l6%° with
the axis of the bridge, indicated that the major and minor axes of
stiffness were determined by the bridge, not by the pipe. Measurements
made on the penthouse floor led to the same conclusion.

Foundation movements of T2 vere determined by measuring acceleration

on top of the four concrete piers supporting it. The horizontal
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translation averaged 1.3 x 10-3 feet, the vertical motion averaged
5.1 x lo’“ feet uplift, and the rotation averaged 2.9 x 10‘“ radians
per foot of penthouse floor motion. The records of these motions
were extremely small, from 0.02" to 0.06" peak to pesk, so 50% varia-
tion in the values given is not unexpected. It is very likely that
rotation here is not proportional to base moment only nor is translation
proportional to base shear only, but the minor effect of these base
movements of T, on the structure as a whole indicate that the effects
of errors in the compliance constants would not be noticed.

Figure 2.26 summarizes the observed base motions and the computed
base forces and moments for & penthouse floor deflection of one foot
in the first wode. Brldge sllding, discussed Iln the next section, 1s
also shown as weli as the computed longitudinel forces at the ends of
the bridge spans. The letters T and C indicate respectively the tendency
for a ‘joint to separate or to close when t’he_structu.rc is deformed as
shown. The actual maximum amplitude experienced on the penthouse floor
was approximately 0.024", so actual forces and motions did not exceed
0.2% of the values shown in Figure 2.26. The dynamic axial forces which
were neglected in equation 2.2 are now seen to be very smell compared
to the dead load compression forces in Ty and TE’ amounting to only
0.8% in To and to & much smaller value in T,. On the bridge, the
dynamic axial force neglected in equation 2.2 has an effect of roughly
0.05% of the effect of shear in equation 2.2, so it is obvious that at
these small amplitudes the coupling between axial and lateral vibrations
is not measurable.

Ground movements on the dam and on the reservoir bottom were

measured by Mr. David Leeds with the Kanal microtremor apparatus when
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the structure was vibrating at the fundamental frequency. On the floor
of the abutment structure, when the gomputed reactions of the bridge

on the abutment were 2000 lbs. longitudinal thrust accompanied by 200
lbs. uplift force, the measured horizontal motion next to the end of the
bridge was roughly 7 x 1072 inches in amplitude,amounting to 0.35% of
the motion on the penthouse floor. Fifty feet away from the abutment,
in directions both parallel and perpendicular to the length of the dam,
the horizontal motion parallel to the length of the bridge was measured
as only 3% to 4% of the motion on the abutment. Traces of these low
level motions were considerably modified by background noise to the
extent that their amplitudes were close to the lower limit at which
quantitative measurements of the forced motions of the dam could be
made. On the bottom of the reservoir, not yet capped by the 6" concrete
slab, 25" from the tower in an extension of the plane containing the.
bridge and the tower, the horizontal motion was found to be only 2% of
the horizontal motion measured adjacent to the base of the tower. The
vertical motion at this point, measured with an accelerometer, was

found to be approximately 20% of the vertical motion measured next to the

outside wall of the tower.

Vibrations of the Entire Structure - Sliding at the Bridge Bearings

Relative movements between the ends of the bridge spans and their
supports were determined by measuring accelerations on both sides‘of the
Joints, and by placing & dial indicator, reading in units of lO'h inches,
across the Jjoints. The accelerometer shown resting on the lower chord
at the ebutment in Figure 2.1l4, Appendix V, is typical of the accelerom-
eter mountings. The dial indicator, used for measurements at Tp and at

the bridge bearing on the tower, was clamped to the bridge with its shaft
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between 3" and 4" above the surface on which sliding was assumed to
éccur.

.If relative rotations of the members on opposite sides of the
Jjoints are neglected, the sliding computed from the dial indicator
measurements showed good agreement with the sliding computed by taking
the difference of the accelerometer readings on the two sides of the
Joints. Across the Jjoint between the two spans at T2, under the
(O - 1) loading at the frequency f,, the dial indicator showed an
amplitude of sliding of the west truss of Bl relative to the west truss
of By of 1.38 x 1073 inches, 8.1% of the penthouse floor motion, where-
as the acceleration differences indicated 7.8%. Across the joint between
the east trusses of the two spans the readings were 7.0% and 6.0% respec-
tively.

If it is assumed that the points of attachment of the instruments
at the ends of the bridge spans underwent the rotations shown by the
computer work, Figure 2.26, and that the center of this rotation was
located on the sliding surfaces, the relative motion across the Jjoint
indicated by the dial readings should be reduced by 17%, whereas the
relative motion indicated by the accelerometer readings should be
reduced by approximately 40%, chiefly the result of the rotation of the
accelerometers in the earth's gravitational field. The good agreement
between the relative moﬁion determined by the two sets of measurements
was taken as an indication that the bridge bearings did not rotate about
a point on the sliding surface. It is recognized now that by taking
two acceleration readings at each point, one with the accelerometer
reversed 180° about a vertical axis, the effect of rotation in the earth's

gravitational field could have been measured. Unfortunately, this
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solution was not realized in the field. The relative motions in the
first mode which were used to determine the springs allowing sliding
in the computer study were 0.045 and 0.035 times the penthouse floor
motion for the Jjolnts Bl-T2 and T2-32 respectively.

An interesting phenowenon was observed with the dial indicator
across the Joint Bl‘Be° While the amplitude of the dial reading was
fairly constant, the center reading about which the needle swung grad-
ually shifted back and forth 0.002" or so in each direction, indicating
that the gap between the spans gradually opened and then closed. No
regularity of this movement was observed. Probably what was occurring
was that as the ends of the spans were sliding back and forth on the
plates below, one end of a span would seize and thus force all the
restoring motion to occur at the opposite end of the span, causing the
span to "walk", first in one direction for several steps and then in
the other difection. In the light of this observation, scatter in the
date around the resonance peaks is not surprising.

At the tower anchorage of By, the sliding movement was measured
with the dial indicator as amounting to 1.9% of the penthouse floor
motion at the fundamentel frequency under the (0 - 1) loading. If
rotation of the bridge bearing about & point on the sliding surface is
assumed, the measured sliding is reduced by 45%. For the computer work
it was assumed that this rotation did not occur.

At the abutment anchorage of Bp the horizontal motion of the bottom
chords of the trusses, next to the anchor bolts, was determined by accel-
eration measurements to be 3.2% of the penﬁhause floor motion and the
vertical motion at this point was found to be 2.1% of the penthouse

floor motion at the frequency fl.under the (0 - 1) loading. Since the
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trace amplitudes of horizontal acceleration were approximately six times
what would be expected due to rotation of the accelerometer in the
earth's gravitational field, the observed response can be assumed to
represent chiefly horizontal motion at the end of the bridge. On the
ebutment itself, alongside the anchor bolts, under the (L.L.) loading
one set of measurements showed horizontal abutment movement of only 16%
of the motion measured on the bottom chord at this point, indicating
that the bridge was sliding on the base plate. It was previously
mentioned that the motion on the floor of the abutment structure, about
13" above the bridge bearing, was 0.003Y times the penthouse floor
motion. Several possibilities can be advanced to explain the fact that
the motion on the floor of the abutment structure relative to pcnthouse
floor motion was measured to be only 70% of the relative motion measured
next to the anchor bolts on the abutment. Relative motion within the
abutment structure between the two points, rotation of the abutment, and
the difference in shaking machine force level for the two cases, result-
ing in different ratios of sliding force at the abutment to penthouse
floor motion, are possibilities. Probably the variation results at least
in part from the fact that the measurements were made several days apart,
and the sliding resistance of the bridge was different on the two days.
If the structure vibrates at a sufficiently small amplitude, bridge
sliding should not occur and the fundemental mode shape should be the
 one predicted in row d of Table 2.6. Measurements of bridge sliding,
relative deflections of the centerlines of the bridge spans, and computed
longitudinal force are shown in Table 2.8 for three loading conditions.
Under the (L.L.) loading the observed relative motions at To and at the

tower anchorages of the bridge are roughly double the values which would
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be expected If there were no slidlng, but only rotations of the bridge
bearings about points on the assumed surfaces of sliding. Because of
the uncertainty of the locations of the axes of rotation it cannot be
stated positively that sliding occurred under (L.L.) except that at
the abutment, as mentioned previously, the evidence indicated that
sliding did occur. Sliding under (L.L.) indicates that the coefficient
of friction of steel on steel was at least as low as 0.009. From the
(0 - 1) loading case in Table 2.8 it can be concluded that the coeffi-
cient of friction at the tower and at Tp was &t least as low as 0.068.
The nominal bearing pressures for the bridge reactions are 90 psi for
steel on steel and 360 psi for steel on Lubrite and Lubrite on micarta.

The expected increase in relative deflection on the centerline of
By» the measurements of which showed a spread from 0.96 to 1.10, did
not occur when the (L.L.) loading was substituted for the (O - 1) load-
ing, nor did it occur under manual forcing, when the relative motion
was observed to be 1.06 times penthouse floor motion. The evidence
suggests that under (L.L.) loading sliding of B, decreased in propor-
tlon to the other structursl motlons, but that the sliding of By

increased proportionally.

Vibrations of the Entire Structure - Linearity of Response

Away from the peaks, the response in Figures 2.20 and 2.24, Appen-
dix V, is seen to be very closely proportional to the amount of eccentric
weight in the buckets of the shaking machine. In the report of the test
of the old Encino intake tower,(z)it was noted that the response away

from resonance did not increase in proportion to the machine loading.

The apparent stiffening property of the spring in that case was not so



- 103 -

great as was reported, however, as a result of errors in the reported
force levels. Recomputing the force levels shows that for the (2-2)
loading condition, relative force level 4.06, the response was 3.36
times the response under the (0-2) loading conditions, relative force
level 1.0, and was 1.87 times the response under the (l-1) loading
condition, relative force level 2.03. The 2.03 force level produced
1.84 times the response of the 1.0 force level. Moving farther away
from the peak showed_much better linearity between the resonance curves
of the two lowest force levels, s0 it is possible that the nonlinearity
reported above was the result of measuring the response too close to
the peak on the resonance curve. Unfortunately, the resonance curve
of the 4.06 force level was not carried out tarther in that test.

The proportionality between fhe machine loading level and the
amplitude of response away from the peaks and the invariance of the
fundamental fregquency at different loading levels are indications of the
linearity of the concrete and of the structural framework for small de-
flections in the first mode shape. Aside from these two observations,
however, the general impression of the structure is one of nonlinearity.

First to be noted is the significant increase in damping with
amplitude at the fundemental frequency. Undoubtedly, increased sliding
of the bridge at higher force levels is at least partially responsible
for the increased demping, although in the test of the old Encino tower,
which had no bridge, damping was found to increase with amplitude. In
the records themselves there were many examples of nonlinear behavior,
all apparently due to structural nonlinearity of the bridge and its

connections. Under lateral excitation at the frequency 1.76 cps, motion



- 104 -

in the direction of the length of the bridge at twice the frequency of
excitation was measured on the penthouse floor. This longitudinal
motion had an amplitude of roughly 0.0023 times the amplitude of lateral
motion of the penthouse floor, which was approximately 0.03". Assuming
the bridge mode shape at this frequency, Figure 2.25, consists of two
sinusoidal loops, the calculated shortening of the centerline of the
bridge due to lateral deflection is only 1.6 x 1072 inches, wﬁereas
the observed longitudinal motion was approximately four times this
amount. Inasmuch &s the frequency of the longitudinal motion was 3.52
cps, not far from the frequency fpo at 3.70 cps, it is apparent that
dynamic amplification was taking place in the longitudinal direction.

At the tower anchorage of the bridge during this lateral vibration
at 1.76 cps, it was observed that the anchorage of one truss acted as a
hinge for the lateral bridge motion, but at the other anchorage the end
of the truss moved back and forth longitudinally as the truss alternate-
ly compressed and extended. This type of action, if present at the
other anchorages of the spans would force the tower in the longitudinal
direction of the bridge at the same frequency as the frequency of lateral
motion, not at twice the frequency. The actions at the other anchorages
wvere not observed, bowever; An attempt to measure torsion in the tower
at 1.76 cps revealed nothing of significance.

At the frequency fl with the force applied in the direction of the
length of the bridge, an accelerometer oriented in the transverse direc-
tion on the centerline of B, recorded a motion at three times the forcing
frequeney, in magnitude approximately 0.018 times the longitudinal
motion on the penthouse floor. Qualitatively this motion can be explain-

ed on the basis of unequal fesistances to sliding of the two trusses of
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By. At low amplitudes both trusses resist ecqually the longitudinal force,
and there is no lateral deflection, but at higher amplitudes one truss
offers more resistance than the other, and lateral deflection results.
A first spproximation to the expression relating lateral deflection and
longitudinal force would thus contain a cubic term, resulting in the
possibility of the third harmonic.(EY)

At 1.56 cps,the frequency of a lateral mode of the bridge shown in
Figure 2.25, sixth harmonic was noted in the lateral acceleration on top
of Tp and fourth harmonic in the lateral acceleration on the centerline
of By. This record is shown in Figure 2.27 (b), Appendix V, in which
the top trace is from the centerline of Bl, the center trace from the
“top of TE’ end the lower trece from the penthouse floor, all measuring
acceleration in the lateral direcﬁion. Figure 2.27 (a), Appendix V,
shows response of the same points at 1.43 cps. Figure 2.27 {(c) shows
nonlinear acceleration records at several frequencies. The top trace
is lateral acceleration on the centerline of B, the center trace is
lateral acceleration on the centerline of Bp, and the bottom trace is
acceleration of the penthouse floor in the direction of the lenggh of
the bridge, the same direction as the applied force. Atkinson(2 )has
demonstrated with an electronic analog the existence of superhafmonics
of even order in the displacement of & one-degree of freedom system
containing a cubic term in the restoring function. As mentioned
previously, the relationship between 1ateral deflection of the bridge
and longitudinal force might well contain a cubic term. It should be
pointed out that the records here are of acceleration, not displace-

ment, and in at least some of the cases illustrated the displacements

would appear as very close to sinusoidal and at the frequency of the
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forcing function.

Vibrations of the Entire Structure - Accuracy of the Computations

and the Measurements

The accuracy of the computer's solution of the set of simultan-
eous equations representing the equilibrium and continuity conditions
in the structure was checked by menually vefifying that all the
equations were satisfied in the modal shears, moments, rotations, etc.
vwhich were printed out, and by having the computer substitute the
values it gave for the unknowns into the original equations and compare
the thus determined right hand sides with the original right handbsides.
All of the 21 equations were found to be satisfied as closely as could
feasonably be desired, except that Mp, the moment at the top of le,
was sometimes not zero, but a few percent of the moment existing 12
inches below the top of the tower. This condition could be easily
corrected by strengthening the criterion for convergence, but doing so
made no noticeable change in the frequency or the mode shape.

The accuracy of the fundamental set of equations, 2.1 through 2.6,
used in getting the transfer functions has been checked, as mentioned
previously, by testing uniform cantilever beams for which solutions are
known. The correctness of the set of equations in Figure 2.11, Appendix
V, and the correctness of the values used for the properties of the
tower and the bridge, however, cannot be verified by any means other than
rechecking the properties against the plans of the structure and rewrit-
ing the equations. These steps have been carried out and no significant
mistakes have been found, but there is no proof that the same mistake
has not Been made twice.

The absolute accuracy of the observations cannot be stated with
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certainty, but the consistency of the observations and consideration
of the dynamic properties of the instrumentation suggests that measured
accelerations were in general within 10% of the absolute values. The
static 2 g calibrations at the end of each day's testing never varied by
mofe then 2% from the calibrations made at the start of each day. In
contrast, the resistance calibrations, used throughout the day, varied
some days as much as 5%, and the variations did not seem to be related
in size or in sense to the variations noted in the 2 g calibrations.
Although the calibrating resistors were rated as being quite insensitive
to temperature in the range encountered, perhaps up to 180°F, no labora-
tory tests were conducted on their behavior under high temperature. The
relays in the Miller C-3 amplifier which closed when the resistance
calibration was carried out are suspected as being partly responsible for
the variations in resistance calibration. In the first analyses of the
data the observations were corrected for the changes noted in the resist-
ance calibrations, and the consistency of the data seemed to be improved
by the procedure. Later, however, the resistance calibrations were
ignored.

The consistency of the different channels is illustrated in Figure
2.22 where the two sets of data were taken simultaneously with two
accelerometers 8" to 10" apart on the penthouse floor. The maximum
spread of the data is seen to be roughly 3% of the amplitudes. Both
accelerometers here were mounted on the portable steel blocks which
were resting on the floor, one thickness of plastic electrician's tape
on the bottom of the blocks belng used to increase the coefficient of
friction. No comparison was made between this type of mounting and

positive attachment of the accelerometers to the floor. The maximum
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horizontal acceleration experienced by this type of mounting was 0.0llg.

The consistency of the data from day to day is indicated in Figure
2.20, Appendix V, inAwhich different symbols on one curve represent data
taken on different days. Away from the peaks the data generally agrees
within + 5% of the average, whereas many readings over & period of three
months on the peak at fl under the (0 - 1) loading showed a spread of
+ 11% about the average. The acceleration records showed that forced
_vibrations of constant amplitude did not continue indefinitely at a given
speed control setting near the fundamental resonance. In one instance,
holding the speed count between 2.113 and 2.117 c¢ps for thirty minutes
or so showed acceleration amplitudes varying by + 2% of the average.
The "walking" of the bridge described earlier probably influenced the
unsteadiness of the response.

At the very low acceleration levels at the bottom of the tower
and on the abutment, errors in measuring the small record amplitudes
affected accuracy, as described in connection with vibrations of the
free-standing tower. Crosstalk among the channels, an effect on one
channel resulting from a signal on another channel, was investigated
at the high gains used for these measurements by deliberately inducing
large signals on adjacent channels and noting the effect on the channel
at high gain setting, the accelerometer for this channel, of course,
being in a very quiet place. Crosstalk noted in one instance was elim-
inated by rearranging the individual amplifiers in the cabinet.

In measuring the trace amplitudes on the oscillogram, a horizontal
line was drawn through the top and bottom peaks of several cycles, and
this peak-to-pesk amplitude was measured with a scale divided into 50

divisions to the inch, tenths of divisions being estimated. Where the
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noise level was high compared to trace amplitude and where harmonics
distorted the trace from & sinusoid the cycles were sketched in by
eye for measuring. It is estimated that errors in these instances

might be as high as 20%.

F. Summary and Conclusions

A careful experimental investigation has been conducted to deter-
mine the dynamic properties of a reservoir outlet structure consisting
of & reinforced concrete tower 149 feet in height and a steel truss
bridge 339 feet long, connected near the top of the tower. Five natural
frequencies and mode shapes as well as foundation movements and sliding
of the bridge on its supﬁorts have been measured. A detailed theoret-
ical analysis of the structure has been carried out using an extension
of the Holzer or Myklestad-Prohl technique, and proof has been presented
that the technique is applicable for finding the natural frequencies
for small vibrations of any linear structure composed of interconnected
elements. The theoretical analysis showed good agreement with the ob-
servations for the lowest mode and fair agreement for the higher modes,
the error in frequency of the fifth mode amounting to 6%. A number of
specific conclusions and recommendations are presented below.

1. Tne analytical technique applied to this structure is of
g<ueral application and appears promising as a tool for
investigating vibrations of rigid frames and of trusses.
Additional work is needed to indicate the efficiency and the
accuracy of the technigue on structures composed of a large
number of members and to develop approximaetions to be used

when exact application of the technique is uneconomical.
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The substitution of a solid flexural member of equivalent

I and A for & trussed member can be significantly in

error, even I'or static loads. A further study of this
substitution, which affords great simplificastion in dynamics
problems, would be of practical value to engineers.
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work weas the modulus of elasticity of the concrete. The
average sonic value determined from three cores near the
base of the tower was spparently &% higher than the effect-
ive value at the vibration levels experienced in the field.
More comparisons between sonic E and effective E as well as
more experiments relating sonic E to specimen size and con-

dition are necessary.

Foundation rocking had more effect on the structure than either

horizontal or vertical trahslation of the foundation. Compu-
tations showed that foundation movements decreased the
fundamental frequency by 0.08 cps, 4%, and decreased the
second frequency of the tower by approximately 7%. Founda-
tion rotation accounted for 9% of thé deflection at the top
of the tower in the first mode. In this case, where the
foundation was sunk into the surface of the rock, better
agreement between computed and observed translations was
obtained.by relating base translation to base moment than
by relating base translation to base shear. Where the

foundation rests on top of the rock the dependence of

trenslation on moment is increased. The center of rotation

for the lower end of the tower barrel in this case was
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approximately two feet below the top of the 10' thick
foundation pad. A careful experimental investigation

of a free standing concrete tower with a simple exposed
foundation resting on rock of known elastic properties
would provide valuable data for calculating foundation
compliance. The problem of an elastic disc embedded in

an elastic medium, the disc supporting a rigid concentric
shaft, needs to be solved for the cases of static moment
and shear applied to the shaft.

The general behavior of the structure at higher frequen-
cies is essentially that of a collection of elements

which vibrate at their individual natural frequencies,

only slightly modified by the motions of the rest of the
structure.

The coefficient of friction determined as a result of the
bridge sliding on its supports is as low as 0.009 for steel
on steel at a nominal normal pressure of 90 psi. The motion
of the bridge under steady excitation of the tower was not
steady, but instead the spans gradually moved together and
then moved apart while vibrating at fairly constant ampli-
tudes. The frequencies of two modes of the bridge were
observed to increase between measurements made three months
apart. The increase is assumed to be chiefly the result

of increased sliding resistance.

Equivalent viscous damping of the tower without the bridge
attached was as low as 0.7% critical at the lowest amplitudes.

With the bridge attached the damping of the structure
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varied from 1.18% at the lowest amplitudes to 3.6% at

an acceleration of 0.013 g at the top of the tower.

The fundamental frequency at the lowest asmplitude of

free vibration was 3% higher than the fundamental frequency
of forced vibration at testing amplitudes, but over a range
of testing amplitudes the fundamental frequency did not
change.

8. A relationship between the base rotation of a cantilever
beam and the decrease in the fundamental frequency caused
by the base rotation hes been suggested on the basis of
two examples. A relationship between the foundation
compliance constant and the decrease in fundamental
frequency resulting from the foundation compliance would
be a valuable contribution to engineering knowledge.

9. ©Second, third, fourth, and sixth harmonics of the forcing
frequency appeared clearly in the records of lateral
accelerations on the bridge and on the top of the steel pier.
These harmonics are possibly the resglt of a bilinear relation-
ship between longitudinel force and lateral deflection,
caused by unequal resistances to sliding on opposite sides
of the bridge.

10. The frequency at which the acceleration lagged the force

by 90° was approximately 0.0l cps below the frequency at

which the amplitude was maximum in the first mode. The

phase lag at the frequency of maximum amplitude was approxi-

mately 110°. No explanation is advanced for this phenomenon.
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III. FORCED VIBRATIONS OF AN EARTH DAM

Introduction

Because of their great destructive potential dams have received
much attention in the literature of engineering seismology. Over forty
entries pertaining to dams appear in the 1958 edition of the Biblio-
graphy of X¥ngineering Seismologyfgg) In the Proceedings of the 1960
World Conference on Earthquake ingineering seven papers are devoted
entirely to dams. In contrast to the large number of theoretical
studies of the dynamic behavior of damé, experimental studies of
aétual dams have been few, due, of course, to the difficult problem
of exciting dams into oscillations large enough to measure. In Calif-
ornia in 1934 and 1v35, two dams of concrete blocks were excited with

(30), (31) ,

mechanical vibrators. Heiland, in 1938, conducted model
studies of an earth dam in conjunction with field vibration testing
of the material to be used in the damsse) In Japan in recent years
several full size concrete dawms, both gravity and arch type, have been

(33), (34), (35)
forcibly excited. Model studies of vibrations of dams
have been conducted by Japanese investigators in connection with the
above mentioned tests of concrete dams. Clough and zirtz, in 1956,
studied the vibrations of models of rock-fill dams€3 ) However, no
experimental work appears to have been done on full scale earth dams.

In this chapter a forced vibration test of an earth dam is described,

" and the results are related to recent theoretical work.

Background of the Test

In the earthquake of July 21, 1952 centered near Bakersfield,

California, Dry Canyon Dam, an earth dam five miles north of Saugus,
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California, suffered some damage and the owner, the Los Angeles Depart-
ment of Water and Power, decided to strengthen the dam with a thick cap
of compacted earth on the crest and on the downstream face. Figure 3.1,
Appendix V, shows the major details of the original construction and the
subsequent strengthening. More recently, especially in viesw of the
increasing population downstream, the guestion of the earthguake resist-
ance of the dam was reviewed. Forced vibration tests of concrete dams
suggested that the structural vibration exciters recently developed at
the California Institute of Technology might be suitable for exciting
the earth dam into vibrations large enough to be detected. A test was
therefore decided upon with the hope of learning something indicative
ol the structural condition of the dam. The Department of Water and
Power furnished transportation, mounting facilities, and povwer for the
shaking machines, and the California Institute of Technology furnished
the shaking machines, instrumentation, and operating personnel. The
University of California at Los Angeles and the Seismological Field
Survey of the U. S. Coast and Geodetic Survey also participated in the

test, furnishing personnel and instruments.

Bxciting Equipment and Instrumentation

Two of the structural vibration exciters recently developed at the
California Institute of Technology for the California Division of' Archi-
(12), (13)
tecture were used to excite the dam. These eccentric weight
machines, which can be operated synchronously, are each capable of
producing & maximum of 5000 pounds sinusoidal uniaxial force above

2% cps, so that a total of 10,000 pounds was applied on the crest, per-

pendicular to the length of the dam. Figure 3.2, Appendix V, shows the
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exciters mounted on a concrete slab 8' x 12' x 16" thick cast into the‘
compacted earth on the crest. The amplidyne control units for the
machines are in the right foreground. #£lectric power for the machines
waes furnished by a gasolinc enginc-driven generator located on the
bench on the downstream face of the dam.

The question of resonances between the earth and the slab on which
the machines were mounted is worthy of consideration here. Such reson-
ances between circular slabs and an elastic half space have been clearly
shown by Arnold, Bycroft, and WarburtonSEO) More recently Thomson,
Kobori, and Reite§37)have reported on the response of the infinitely
rigid rectangular slab on an elastic half space. The mounting condifions
on Dry Canyon Dam are not well represented by this theoretical treat-
ment, but some idea of the interacfion between the slab and the soil
can be gained by assuming that the slab is rigid and the soil is a
perfectly elastic, homogeneous, isotropic solid with & Poisson ratio
of 0.25.

Thomson, Kobori, and Reiter state that the rotational response,

i
¢, of the rigid slab subjected to a rocking moment MRewt is given by
N
¢=MR b (fl+ 1f2)e ,
=
where ¢ is one half the slab width in the direction parallel to the

plane of Mg b is one half the slab width perpendicular to ¢, & is

and f, are functions of the

Lame's constant for the half space, and f o

1
slab dimensions, the forcing frequency and the shear wave velocity in
the half space. If & minimum shear wave velocity of 600 feet per second

is assumed in the compacted material on the crest, the values of fl and

fé for frequencies below 5 cps are seen from page 8 of Reference 37 to
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be almost constant, indicating that the force applied to the dam in

the frequency range O-5 cps was not significantly influsnced by any
rocking resonant effects between the slab and the earth. Any local
rotation of the earth would have only & small influence on the meas-
ured response of the dam inasmuch as the measured motion of the crest
was translational, not rotational. Thouson, Kobori and Reiter have

not computed the case of the slab forced parallel to the surface of the
half space.

Resonances between the shaking machines and the slab have not been
thoroughly investigated. At maximum force output the maximum observed
amplitudes of the tops of the machines have been less than 1/16", which
is approximately 0.5% of the radius arm of the eccentric weights. It
is doubtful if in this test any resonant.motion of the machines on
their bases could have been responsible for more than a few per cent of
the force applied to the dam.

The level of excitation required for a vibration test of a structure
is determined by the sensitivity of the instrumentation and the level of
background noise in the structure. Unless statistical methods are used
on the data or a demodulator is a part of the instrumentation, such that
only the frequency of excitation is passed, the minimum required exci-
tation is the larger of either that which can excite the structure
above the background, or that which can produce a response above the
minimum which the instrumentation can record. At some distance from
the vibration exciters and the engine-driven generator, the lower
limit of response of Dry Canyon Dam was determined by the sensitivity
of the instrumentation, but close to the exciters high frequency vibra-

tions masked the response of the dam. It is recommended for future
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tests that line power be provided for the machines, or if that is not
possible, generators be mechanically isolated and be situasted at as
great a distance as possible from the points of measurement. Trans-
ducers of lower natural frequency would be better suited to tests of
dams than tﬁe 100 cps instruments used here.

The instrumentation used for the Dry Canyon Dam test was the
same as that used on the Encino Reservoir tower, Part II. This consist-
ed of the William Miller Company C-3 carrier amplifier, the Statham
A5-2-350 accelerometer, and the Consolidated Electrddynamics 5-124
oscillograph. Both the accelerometers and the recording galvanometers
had natural frequencies of 100 cps. A galvanometer of 18% c¢ps natural
frequency wés used later in the test to filter out 60 cps hum caused
by a malfunction of an amplifier tube. Thé overall sensltivity of the
system was such that 0.00lg acceleration produced a galvanometer deflec-
tion of approximetely three inches.

The amplifiers with the oscillograph resting on top are shown in
Figure 3.3, Appendix V. The shield over the front of the oscillograph
prevented the record from being destroyed by exposure to sunlight. In
the foreground, an accelerometer is bolted to a protractor table for
calibration.

Other instrumentation at the site vwere the Kanai Microtremor
apparatus, manufactured by the Hosaka Shindo Keiki Company of Tokyo,
and two Sprengnether Blast Recorders. The Kanai instrument, a displace-
ment divice with a maximum magnification of 140,000, was operated by
Mr. David Leeds of the College of Engineering, U.C.L.A. The Sprengnether
instruments, three-component displacement meters of approximately Loo

magnification, were operated by Mr. W. K. Cloud and Mr. C. Knudson of
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the U. S. Coast and Geodetic Survey.

ixperimental Procedure

Initially, "rundown' tests were performed, in which one of the
machines was brought up to its maximum speed, 10 cps if unloaded, and
then allowed to coast to rest as a record was made of the response.
This technique, which was a necessity in the days before good speed
controls were aveailable, produces a rapid scanning of the frequency
range, but it does not locate the resonant frequencies with nearly the
accuracy of steady state excitation if the resonances are closely
spaced. An example of the complicated nature of response to rundown
excitation was shown in Figure 2.16, Appendix V. The major testing
effort was devoted to steady state excitation, with a very close scan-
ning of the frequency range, at approximately 0.02 cps intervals. It
was found that measurements of the response at & point on the dam
could be duplicated to within a few percent on succeeding days, giving

credence to the whole testing procedure.

Experimental Results

The chief results of the testing are summarized in the three
resonance curves shown in Figure 3.4, Appendix V. The locations of the
points whose response is represented by the curves are shown on the
sketch in Figure 3;#. The curves represent displacement per unit force,
and were obtained by dividing the measured accelerations by a suitable
constant times the fourth power of the freguency, the assumptions being
that the motion was sinusoidal and that the structure responded linearly
to a change in force level. Inasmuch as the oscillograms were of accel-

eration and were sinusoidal in appearance the first assumption is
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reasonably justified, and several checks of linearity of response with
force level justified the second. The data plotted on each curve were
obtained over several days of testing,in general with more than one
accelerometer and with more than one eccentric weight combination in
the shaking machines.

Pnase Lugs of displacement relative to the force, noted on the
curves in Figure 3.4, were scaled from the oscillograms, the accuracy
at the higher frequencies probably not better than + 20°. Phase lag
was monitored continuously from the low end to the high end of the
frequency range, resulting in values greater than 360° 1o curve B.
Although it is possible that some multiple of 360° should be added to
all the phase lags, it is believed that the values shown are the abso-
lute values.

The striking features of Figure 3.4 are the close spacing of the
resonances, the sharpness of the peaks, and the high level of the "base"
compared to the peaks, especially in the case of curve A. Had not a good
speed control been available, the fine scanning of the frequency range
necessary to define the resonances would not have been possible. The
scatter notad on the low frequency end of curve A is probably the result
of the small amplitude of the records at these frequencies, as low as
0.09" peak to peak. The steady state amplitudes were found to be not
perfectly steady, perhaps due to poor generator control, and most of the
plotted points are the average of five or so individually measured ampli-
tudes. Such a data reduction procedure is very tedious, but the results

by this procedure showed less scatter.
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Vibrations of the Truncated Shear Wedge

Vibrations of earth dams,; considered as shear wedges of finite
(38), (39)
length, have been treated by Ambraseys. Briefly, the relation-
ships of the truncated wedge are developed here, using the nomenclature
of Ambraseys.

Consider the elastic wedge shown in Figure 3.5, fixed against
movement at the ends and at the bottom, and possessing only shearing
resistance to deformation. Using the coordinates shown, the equation
relating the inertial force and deformation of the undamped structure
is:

-?ya? u -t»(}-yaz u +Gya'2v u +Ga 2u =z O, (3.1)
-2

2 ¢° ?x ? y2 Dy
where F is the mass density of the material, G is the modulus of
rigidity, and & expresses the relationship between the thickness and
the distance from the vertex, b = ah'. If now the function u is assumed
to have the form
/
2? sin r’Tx sinwt,
T

) }

then for each u, equation 3.1 takes the form

ygur" + yu ' +[:aJ2/SQ - (%;)é] ygur = 0, (3.2)
where S = “IE%;: the velocity of shear waves in the material, and (')
indicates differentiation with respect to y.

Equation 3.2 is recognized as Bessel's equation of order zero, with

the solution

r = M(HY) + BY, (Hy),

2,2 rme |3
Lw/b (%L)]

=
11

where

e
u
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Wnen consideration is given to the boundary conditions
ur(oyb’)’ = Uy (Ly y) = . (x, H) = aur(x)h‘) = 0,

2y
there results the characteristic equation

J1(Bat) Y (PgB) = 3 ()Y (Boh') « 0, (3.3)
or in the more convenient form of Ambraseys,

I (k'a )Y (a ) - Jo(ay)y;(k'a ) = O, (3.3)"
where a, = ‘ﬁnﬁ and k' « h'/H.

From equation 3.3 the natural frequencies are determined, and the
equation of the nrth mode is given by

Upy = JO(_an y/E) - Jolay) I, (a.n y/H)] sin (-fll‘:-}-{-) sint, L,
¥ (ay)

where - 1
=N riiHy2 |2
e = £ [+ EBP ], (3.4)

and a, is a root of equation 3.31 The mode shapes of the wedge are thus
seen to be sine waves in the longitudinal direction and curves defined by
Bessel functions in the vertical direction.

To prove the orthogonality of the modes consider two modes, u,. and
Up,s in equation 3.2:

Y Upgy" + Upy' ‘[%iEEE - (sz)z:l Y Uy = O

and

Y upe" + Ut - [FJnge - (5%52:1 y u,. = O.
) S

Multiplying the first of these equations by u,,. and the second by Unp

and subtracting, there results

2 2 "
iﬁ[zdnr i} Qer.] Y Upp Ypp ¥ Y onr (¥ uge” + upp') - up (v upy” + upp) - 0,
5
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or

-—1-2- wn.re - mrQ] y U’mI‘ unr + unr (y u&r)' - umr (y ul"lr)‘ - O. (3'5)
S

The last two terms of equation 3.5 are the derivative of

y (u! 'U'u):

mr nr nr mr

so upon integration over the range of y, equation 3.5 becomes

H H
. 2 2 .
1 - = ' - u' = 0.
g2 [:wnr mr](! Y e um_dy _[y (umr “ar T Var umr) :lh' ©

Thus, if n § m, J. yu u dy = O,

bt mr nr

The Fourier expansion of u along the length of the wedge guarantees

orthogonality in the x - direction, therefore
H
f'[oyumrunsdxdy=0foru;£morr;£s.

The response of the wedge to any force may be found by first expanding

the force in a double infinite series of the characteristic functions

Pyt ééyAnrtur’

where
Anr(t) = /g'jg Fup dxdy

H/L 2
jiﬂf; 4 unr dxdy

Then proceeding in the usual manner for characteristic value problems the

response of any mode, g (t), is given by
W, . (t T)
pe N1 - Snrg

whereS'nr is the fraction of critical viscous damping in the mode. The

response of a point b on the wedge to a sinusoidal force concentrated at

point a is given by

(3.6)

u(b) =<(’2§ uny(b) Fu (a) sin (W t - ¢ )

ff paug o [1-(/ 005 2) 2 + @)k )Paxay,
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vhere

-1 0
¢nr = tan Eym_ /(,_)nr

1 (W )?

Applicstion of Theory to Dry Canyon Dam

An attempt was made to apply this theory of the shear wedge to the
observed behavior of Dry Canyon Dam under the sinusoidal excitation,
although it is recognized that the dam differs from the wedge in the
following respects:

1. The dam is made of several imperfectly elastic materials,

the relative proportions of which, through the thickness,
vary along the height of the dam.
2. The thickness of the dam does not taper uniformly along
the height, and the thickness increases near the abutments.
3. The foundations and the abutments are not perfectly rigid,
and are not smooth planes, horizontal and vertical respectively.

From the Figure 3.1, Appendix V, the height, H, to the apex of the
wedge was taken as 65', h' as 5', and the length, L, as 485'. From
Reference 38 in which Ambraseys has tabulated values of ay, for various
values of the truncation coefficient (k' = h'/H), the first two roots
of equation 3.4, the frequency equation, are a; = 2.43 and ap = 5.60.

If an average shear wave velocity is assumed as 302 feet per second,

the first ten calculated natural frequencies are those tabulated in
Table 3.1 alongside the observed frequencies of curve A, Figure 3.4.
Parentheses around an observed frequency means a resonance is suspected,
but no peak was observed. The agreement of the frequencies in Table 3.1
is ratber striking in view of the obvious differences between the dam

and the elastic wedge. It will be noted that the differences between
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Observed Computed Position Estimated
Frequency Frequency Factor Damping
cps cps Fraction of Critical
1.82 1.81 0.92 0.10
1.89 0.27 0.10
2.01 2.03 0.46 0.040
2,23 2.19 0.80 0.048
(2.45) 2.38 0.0k 0.035
2.60 2.59 0.99 0.035
(2.80) - 2.82 0.12 0.030
3.0k 3.07 0.65 0.024
3.3k 3.33 0.62 0.019
(3.65) 3.59 0.1k 0.030
TABLE 3.1

NATURAL FREQUENCIES, POSITION FACTORS, AND DAMPING
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two adjacent observed fregquencies do not increase monotonically with
frequency as indicated by equation 3.4, the resonances at 2.23 cps
and 2.45 cps departing from the pattern predicted by theory.

The fact that several observed resonant frequencies appear only
weakly in curve A, Figure 3.4 can be explained by a small value for
the product u,,. (b)'unr (a) in equation 3.6. Relative values of this
product for curve A are listed in Table 3.1 under the heading "Position
Factor." It is seen that in general the weak resonances are associated
with small values of the position factor.

The computed frequencies and the position factors of Table 3.1 are
dependent upon the values assumed for H, h', L, and S and upon the
positions of the effective ends of the dam with respect to the location
of the vibration exciter. The position féctors in the higher modes
are especially sensitive to changes in the locations of the ends of the
dam. From the longitudinal cross section of the dam, Figure 3.1,
Appendix V, it 1s obvious that the values of all these dimensions might
reasonably be varied to some extent. The values used are the result of
scanning the variables with a digital computer and comparing the resulis
with the values of the observed frequencies and the strengths of the
resonances. For the position factors shown in Table 3.1, the ends of
the dam were assumed at stations O + 90 and 5 + 75, whereas the shaking
machines were located at station 3 + 75.

It will be noted from the frequency equation that for higher values
of r the diffefence, A T, between adjacent frequencies was approximate-
ly S/2L. This observed difference in Table 3.1 is approximately 0.30 cps,
suggesting that S = 0.6L feet per second. Velocities of P - waves, Sp,

produced by striking a sledge hammer blow against the surface of the
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dam were reported by Mr. David Leeds of UCLA as between 1325 and 2500

feet per second. Using the relationship
S, =5 1L-2vy
\4
PN o1y

Poisson's ratio, V, must have the value 0.472 to correlate the minimum
Sp value with the computed value of Sv of 302 feet per second. Unfortu-
nately, representative values of V¥ do not seem to be available among

the more common texts on soil mechanics.¥

Determination of Damping

From the previously mentioned assumed values of the length, height,
etc. of the dam, the lowest frequency associated with the second mode
in the vertical direction, f;,, is calculated to be L4L.18 cps. Referring
to curve A, Figure 3.4, Appendix V, the resonance at 4.12 cps, assumed
to be fel’ does not appear to have any significant influence which
varies with frequency on the response of the dam at freguencies below
3.7 eps, so it was assumed that below 3.6 cps the resonance curve was
the result solely of the first ten modes whose frequencies, fjj to

£, 1o» 8re tabulated in Table 3.1, plus & "base" of constant response in

1,1
phase with the force. The base represents the response of all the modes
with frequencies above fl,lO‘

Using the first ten modes and estimating damping, u(b) of equation
3.6 was then evaluated on a digital computer at intervals of 0.02 cps
over the freguency range 1.7 cps to 3.8 cps, and to the result was added

the base representing the response of all‘the higher modes. The base

was, of course, estimated, the criterion being the appearance of the

* According to Professor G. W. Housner, wave velocity measurements in the
mud under San Francisco Bay gave a value of Poisson's ratio of 0.495.
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resulting resonance curve. On curve A the base tends to increase
ordinates at the lower frequencies and to decrease ordinates at the
higher frequencies. On curve B the effect is more complicated. The
base used for curve A was 0.235 times the in-phase component of the
response of the first ten modes at 1.7 cps, and of opposite sign to
the in-phase component, suggesting that the base is composed chiefly
of response of the second mode in the vertical direction. The base
used for curve B was 1.0 times the in-phase component of the response
of the first ten modes at 1.84 cps, and was of the same sign as the
in-phase component. Only relative response was calculated, no attempt
being made to obtain an absolute value of the double integral in the
denominator of equation 3.6.

Figures 3.6 and 3.7 show the computéd resonance curves corres-
ponding to curves A and B in Figure 3.4. Damping constants for the
first ten modes, listed in Table 3.1, were adjusted until the computed
curve A appeared to agree best with the observed curve A. The relation~
ship between the position factors and the damping coefficlents is very
obvious now. Curve B; Figure 3.7, was then computed using the same
damping factors determined for curve A, but with the base adjusted by
trial and error for best agreement with the observations.

It is seen that the agreement between the curves A is fairly good
in view of the>simplifying assumptions made in the calculations. Com-
puted curve B, howevef, has only a few features in common with observed
curve B. It seems probable that by readjusting the locations of the
effective ends of the dam and by readjusting the damping that computed
curve B could be made to show much better agreement with the observed

curve B, Such readjustments however would very probably result in
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poorer agreement between the curves A. The damping factors in Table
3.1 are seen to vary from 0.019 in the ninth mode to 0.10 in the two
lowest modes. Whether it is reasonable for damping to decrease in the
higher modes is subject to guestion. It is very likely that the
damping is more complex than the modal damping assumed here.

The order of megnitude of the shear stress in the dam resulting
from the forced vibrations can be estimated by assuming all the response
at 1.6 cps results from the first mode only. The force at 1.8 cps was
5300 pounds and the resulting deflection of the center of the dam at
the level on which‘curve A was measured was then approximately 1.65 x lO'h
inch, resulting in a deflected shape in the horizontal plane given by
u s 1l.65 x lO‘LL inch-sin GTx/L). The shear strain at the abutment is
then T /L-u(L/2), and if G is taken as 2150 psi to correspond with
a shear wave velocity of 300 feet per second and an estimeted density
L

of 110 pounds per cubic foot, the computed shear stress is 1.9 x 107

pounds per square inch.

A Proposed Digital Technique for Finding the Frequencies of Dams of

Irregular Outline.

The application of the theory of the vibrating shear wedge to Dry
Canyon Dam, gquite irregular in outline and with a foundation and abut-
ments which are not perfectly rigid, suggests that a digital computer
technique should be developed to compute the natural frequencies and
mode shapes of actual dams. The method presented here is an extension
of the Holzer or Myklestad-Prohl method, which has been successfully
applied to flexural members, and to a flexural framework in Part II.

Consider the shear dam of Figure 3.8 (a) to be vibrating at a
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circular frequency (~. Let the dam be divided by & grid with nodes
identified by row and column (r,c), numbered from the left and the
bottom, and let the masses between the nodes be concentrated at the
nodes. Acting on each mass m.., in addition to the inertia force will
be four transverse forces dependent on the deflections of the adjacent
masses relative to m,, and on the shearing resistance of the material
between the adjacent masses and m..- Figure 3.8 (b) illustrates the
nomenclature. Using the sign convention that a shearing force is
positive if it acts up from the paper at the left of or below a mass
in Figure 3.8 (b), and negative if it acts into the paper at the right
of or above, and letting Upes the transverse deflection qf Wy be
positive when directed into the paper in Figure 3.8 (a), the following

equations may be written:

r r c 2
Ve,e#l = Vrje ¥ Vre © Vl,e T W Wy Uy e (3.7)
c r c r 2
Vv =V o+ V -V - (3.8)
r+l,c r,c r,c r,c+l w mr,cur,c
r
KV Ax
= r,c+l c+l
Yp el = Y * GAr, (3.9)
r,c+l
Kv® A
L T N ré“”’l Jr, (3.10)
r,ct+l

where K is a constant, V is the transverse shear in the section between
the concentrated masses, G is the modulus of rigidity, A is the transverse
cross sectional area of the section between the concentrated masses, and
Ax and Dy are the distances between node points, horizontal and vertical
respectively.

Thus, if a sufficient number of shears and node deflections are
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»kncwn, it is obvious that application of equations of the type 3.7
through 3.10 would permit step-by step determination of all the other
shears and deflections in the dam. It can be demonstrated that if the
shears in the three horizontal strings on the left side of the net in
Figure 3.8 (a) are known, then all the other shears and deflections may
be computed, the deflections at the left abutment and at the bottom being
assumed zero fof the time being.

For illustration, the dam has been divided into a coarser net in
Figure 3.8 (c). Assume that the shear V§’3 in Figure 3.8 (¢) has the

value V¥ _, and the shears Vf , and VI , are zero. If equations of the
k,2 2,k

33
type 3.7 through 3.10 are applied successively through the net, it will
be found that on the right side of the dam the deflections Uy gy U3 §)
and Up 7 will in general not be zero, buﬁ for the trial frequency «w,
they will have values linearly dependent on V§’3 and dependent on W in

& more complicated manner. Thus
- r

W,9=CVE 5 uzg= CaV3 3 V7 = c3v§’3.

If now V§,3 is set to zero and a value is assigned to Vz 27 repetition
b4
of the step-by-step procedure will produce a linear relationship between
deflections at the right abutment and Vi,g. The procedure may be
repeated similarly for V; L
)
Thus, deflections at the right abutment are expressed by the equation

( 3
1-1383 ]Vhe

) )

where C is the 3 x 3 matrix of C's derived above. Inasmuch as {u} must

be zero if the abutments are rigid, unless {V} is zero, the determinant
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of C must be zero. It will be found that there are only discrete
frequencies for which the determinant of C is zero, the natural fre-
guencies of the structure. These natural frequencies are found by
trial, the criterion being the minimization of the determinant of C .
If the foundations and the abutments of the dam are not perfectly
rigid, the method that has been described is still applicable if the
compliance of the rock is assumed to be that of an elastic spring, so
that the deflection of & node point on the rock is proportional to the
shear force in the string connecting to that node point. In this case,
neglecting the inertia of the rock, the effect of compliance of the
rock is simply a lowering of the stiffness of the strings between the

rock and interior node points.

Summary and Conclusions

An earth dam 60 feet high by 485 feet long by 450 feet thick at the
base was excited into transverse vibrations by two synchronized vibra-
tion generators having a combined capability of 10,000 pounds. The
response of the dam was sufficiently large in the upper portion so that
it could be recorded with an instrumentation system of commercially avail-
able acceleromgters, amplifiers, and light beam galvanometers having a
frequency response flat to 60 cps. The measured resonance curves showed
many closely spaced natural frequencies, which can be fairly well ex-
plained by the theory of a truncated wedge vibrating in shear. Applica-
tion of the theory to the dam indlicated a shear wave velocity of 300 feet
per second and equivelent viscous damping of from 2% to 5% criticel in

the third through the tenth modes and approximately 10% critical in the
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two lowest nodes. The_maximum shear stress developed during the test
wa.s estimatgd to be of the order of 2 x 10’“ psi. A digital computér
technigque is proposed for finding the frequencies and mode shapes of
shear dams with irregular dimensions and with foundations and abutments
which are not perfectly rigid.

The results of the forced vibration test indicate that further
shaking of earth'dams can be profitably conducted with the vibration
exciters and the instrumentation used for this test. It is recommended
that tests be conducted on earth dams or fills which are of more uniform
composition and have more regular outlines than the Dry Canyon Dam. The
source of power for the shaking machines preferably should be a utility
line, otherwise good vibration isolation should be provided for any
generator used. The instrumentation which was used for the Dry Canyon
test should be suitable for measurements in the upper portions of low
dams with shear wave velocities greater than 3QO feet per second. Inas-
much as the fundamental frequency of a long dam varies approximately
inversely with the height, geometrical similarity retained, the measured
acceleration in the fundamental, due t0 excitation from an eccentric
weight vibrator, would be approximately inversely proportional to the
cube of the height. Higher dams therefore would require'more sensitive
lostrumentation such as displacement or veloclty transducers, or more
sensitive accelerometers. In conjunction with such vibration tests, soil

investigations should be conducted to relate the properties en masse to

those determined from small samples.
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IV. A NEW METHOD FOR DETERMINING STRUCTURAL PARAMETERS FROM DYNAMIC
MEASUREMENTS

Introduction

Techniques of computing the dynamic response of hypothetical
structures with precisely defined masses and restoring functions are
well known. The literature is replete with examples of the response
of linear systems to various exciting forces. Many solutions of hypo-
thetical nonlinear systems have also been reported. ©Examples of the
determination of the response of nonlinear structures are given by the
Response Analyzer Committee at the Second World Conference on Earthquake

(b0) (k1) (42) (43)
Engineering, Berg, Caughey, end Iwan.

The more difficult inverse problem, that of determining the propert-
ies of & structure from measured response, has not received the same
attention. Berg has presented the theory for determining the mass, spring,
and damping matrices of linear lumped-mass structuresufrom observetions
of pure mode shapes and their associated frequenciesf u)Kobayashi has
described and given an example of an analog technique for determining
the masses, springs, and dampers in a linear structure from simultaneous
records taken gt tE? base and on the roof of the structure subjected to
earthquake motions >) 0'Kelly has illustrated the determination of modal
damping constants figm experimental data obtained on an electrical analog
of a linear systemf ) No work, theoretical or experimental, on the deter-
minatlion of‘the parameters of nonlinear structures appears to have been
published, however.

Although it may be argued that from the known mass distribution of

& structurc, thc observed natural frequencies and mode shapes, and from

the decay of free vibrations or the widths of resonance peaks that an
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gquivalent linear system may sometimes be constructed to adequately
represent a nonlinear system, real progress in nonlinear vibrations

can be made only by recognizing and defining the nonlinear parameters.

In the paragraphs which follow, the theory of a new method for linear

and certain types of nonlinear lumped-mass structures is outlined, and
experiments on a nonlinear single-mass system are described to illustrate

the method and to indicate its practicel limitations.

Preliminéry Considerations

To obtain a picture of the problem, consider the system of n lumped
wasses shown Ln Figure 4.1 (&) to be subjected to a known dynamic force
system F(t) consisting of one or more forces Fi(t) acting on the masses,
m;, in the plane of the paper. In this example, for small displacements,
the geometry of the structure limits the masses to horizontal movements,
a situation representative of many actual structures. In the most
general case, the columns are attached to the masses by hinges with
hysteretic moment-rotation characteristics which change with the history
of strain. Examples of such characteristics are shown in References 40
and 47. The equation of dynamic equilibrium of the mass m; is given by

. X1 X2 Xn « .

Fi(t) = myxq + Gy ( f; dx, , f; AXpy enes ,j; dxn,xl,xg....,xn).
The function Gi at any instant, expressing the effect of the remainder of
the structure on the mass m, , depends upon the previous displacement
history of every other mass in the structure. Velocity terms have been
edded here to agree with past practice, although it is believed by some
authors that the use of viscous damping has bzgn based more on mathematic-
al convenience than on experimental evidencef ) To derive such a general

expressioh for Gi from experimental dynamic data appears much too diffi-

cult at the present time.
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A much simpler structure is shown in Figure 4.1 (b). Here the
columns are rigidly attached to the masses, which themselves are rigid,
and hysteretic hinges carn form between the masées, but it is only the
relative deflections of the two adjacent masses which now affect the
force on any mass. General expressions for the G functions for even
this simple strugture»appear to be too complicated to be derived from
dynamic experiments at the present time, but the method which will be
described is applicable to defining the G functions over portions of
the displacement paths actually followed in some dynamic process. In
theory the same thing can be accomplished in the more difficult case
considered first, but, practically, accurate fesults are much less likely.

If in Figure 4.1 (a) the moment-rotation characteristics of the
hinges are nonlinear, but not hysteretic,‘then the force of the remainder
of the structure on any mass at any instant is siwmply a function of the
relative positions of the masses and the relative velocities at that
instant, independent of the past history of motion, and the G functions
are much more amenable to description. The method to be described is
applicable to this class of structures as well as to linear structures.

The problem considered here can be very difficult. The view taken,
however, 1s that when & lumped-mass structure responds to a dynamic
force, a phenomenon involving a finite number of forces, masses, acceler-
ations, velocities, and displacements takes place. If sufficiently
accurate data of the phenomenon is gathered, reasonably accurate construc-

tion of the relationships among the variables should be possible.

Description of the Method

The method proposed for determining the masses and the G functions
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of a structure consists of solving the equations of dynamic equilibrium

of the masses, with observed simultaneous values of forces, accelerations,
velocities, and displacements entered into each equation. The G functions
can be exfressed in terms of orthogonal polynomials of the variables
involvedf 7 or as an alternate choice a more simply formed expression

for G can be assumed and the coefficients of powers of x and x can be
determined by solving as many equations as there are unknown coefficients.
If more data are available a least squares technique may be used to obtain
a best fit. In theory if there are assumed terms in G which are not act-
ually related to the phenomenon, the coefficients of these terms will

turn out to be zero. What actually happens in this case is illustrated

later.

The Linear Viscous Damped Structure

For the linear viscous damped structure of n masses, the G function

for the ith mass has the form

Gj = Kiq (xi-xl) + K12 (xi'XE) + ..+ Kin(xi-xn) + Kioxi +

Cil(xiiﬁ) + Ci2(xi-x2) + o4 Cin(xi—xn) +Cy %

oi

There are in the most general case (n + n) unknown coefficients in an
n-mass structure.

To solve for the messes and the restoring and dissipafive constants
of & linesr structure, the experimentally observed values of F, %, x, and
x must come from response to more than one frequency if the excitation is
steady state sinusoidel. The reason for this is illustrated by the simple
example of & single degree of freedom system. The response of the system

to a steady sinusoidal force is
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x(t) = F sin (“)t'¢) , § = tan~t ésw%un
- 2-
K'JK; - (UJldn)ffi (23Wr,) 1 - Zualdn)z
where S-: C . The simultaneous records of force, acceleration,

24 KM

velocity, and displacement would look slmilar to those shown Lln Flgure
4.2, Since there are three unknowns to be found, m, X, and C. The
records are cut at & minimum of three places, a, b, ¢ in Figure 4.2 to
obtain simultancous values of F, ﬁ, i, and x for the following equations

of dynamic equilibrium.

=3
"

(1] .
mxa + Kxa + Cxa

Fpp = mxy + Kx + Cxp (L.1)

¢ = MK + Kxg + Cxg

Now the accelerations of a linear system under steady sinusoidal
excitations are always equal to (-GJE) times the displacements, and if
a solution of equations L.l is attempted by Cramer's method of deter-
minants it will be found that the determinant of the coefficients of the
unknowns is zero. It can also be easily demonstrated that the deter-
minant in the numerator of this solution is zero. If at least one of
the equations 4.1 pertains to a different frequency, however, the deter-
minants in Cramer's solution can still be zero by unfortunate combination
of frequencies and the locations of the cuts, but they are not necessarily
zero as in the previous case, so a solution is possible. Although no
formael criterion is established here for locating the cuts, the solutions

would logically be best defined from datas taken throughout the entire

range of the natural frequencies of a multiple-mass structure.

The Nonlinear Nonhysteretic Viscous Damped Structure

In this type of structure Gi is again indcpcudent of the sign of X



..]_143-

WiNANS

ERVERV.

$ Nl N TNt

b

kl.,\ /\t
N/ NN

Xb

NANANS

VARV

ta |tb [te
FIGURE 4.2
ILLUSTRATIVE RECORDS



- lhk -

as in the linear structure, but the expression for Gi is more complex:

%KS) Gy )" %KEZ) (r )" % oo v 2K, ( ) o Gt

S
+2K§§’ (x,)° én C.. (x,-x,) +C_x_.

s ' L Jel 13 17 io”i

The Nonlinear Hysteretic Viscous Damped Structure with Columns Rigidly

Attached to the Masses

For this structure it is suggested that the data for defining the
G functions should come from one continuous piece of record over the
length of which neither of the relative velocities, (il—ii_l) and
(ii_§i+l),undergoes & change in sign. The G functions so derived would,
as in the cases of the two previously considered structures, pertain
only to the actual paths represented by the record, but in this case each
determination would pertain to only a short path, which would be depend-
ent upon the previous history of the motions. The function Gi over this

length of record could be expressed by
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If this same technique were to be applied to the more general case,
in which the effects of the deflections of a mass are transmitted beyond
the adjacent masseé, the length of record in which none of the relative
velocities changed sign might be very short. In theory the cuts in the
record could be made very close together in such a case, but obviously
this would result in equations of dynamics equilibrium being almost
identical at adjacent cuts, and would require more refinedvinstrumentation

and more precise reading of the records.
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Quality of Instrumentation

The method described is seen to require exceptionally good experi-
mental data. Not only must the amplitudes of F, ¥, i, and x be recorded
asccurately, but phase lags in all the records must be very small or be
all the same. Reference to Appendix I indicates that if the response
of the structure is measured with seismic-type acceleration, velocity,
and displacement transducers, it is doubtful if the several records
could be obteined with sufficient accuracy so that the proposed method‘
could be applied. If, however, velocity and displacement were measured
absolutely from a fixed reference platform ad jacent to the structure,
records of suitable quality would be more likely.

Reference platforms are generally not available for other than
experimental structures, however, so it is proposed to measure only
acceleration and to obtain velocity snd displacement by integration
of the acceleration records. In Appendix Il a numerical integration
technique is described and the accuracy on & steady sinusoidal record
is illustrated. Unless acceleration is integrated continuously from
rest, the absolute value of displacement cannot be determined from

steady state acceleration records.

A Structure end Instrumentation for Testing the Method

Ideally the method should be tested with hypothetical data before
experimental work is conducted, but the question of the adequacy of
commercially available instruments to fﬁrnish accurate data was of such
importance to practical application of the technique that experimental
work was underteken first to provide data for testing purposes.

The steel structure shown in Figures 4.3 and 4.4, Appendix V, was
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built to test the method. It consists of two beams of 8" wide flange
section at 17 pounds per foot by 42" long, held 12" aﬁart by plates
holted to the top and bottom flanges. Piecegs of 1" steel plate \-}ere
placed in the pocket formed between the beams to add to the mass. Eech
column consists of a 3" channel at 4.1 pounds per foot, pinned at the
base and connected to & beam with two 1/4" thick angles welded to the
back of the channel, the web of the beam passing between the outstanding
legs of the angles. Three 3/4" bolts comnect a beam web to the angles
on each column, the distance from the center bolt, at the middepth of
the beam, to the pin at the base being 453". The total concentrated
weight, counting one-half the weight of the columns, is 469 pounds.
The natural frequency of the structure for small oscillations is approxi-
mately 4 cps, and the equivalent viscous damping determined from the
decay of small oscillations, is approximately 2% critical.

Two methods were used to apply dynamic forces to the structure.
The Lazan mechanical oscillator, model LA-1l, manufactured by the Baldwin
Locomotive Works, is shown in Figure 4.3 mounted on top of the structure.
This oscillator, which with its motor and mounting base weighed 145
pounds, is rated as producing a sinusoidal force, parallel to the beams
in this case, of 3.1k pounds x (cps)e. The control used for the L/4
horsepower D. C. motor was the General Electric Thy-Mo-Trol shown be-
neath the structure. This control held the force amplitude reasonably
steady at amplitudes of motion up to 1/2" below the natural frequency
of the structure, but above the natural frequency the force amplitude
was modulated by lower frequencies.

The oscillator rested on ball bearings so that except for slight
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frictional forces its entire horizontal output was transferred to the
structure through a force gage, only a small portion of which can be
seen above the leg of the buttress to the left of the oscillator in
Figure 4.3. The measured force, of course, included the inertia force
of everything supported on the ball bearings. To decrease the trans-
mission of high frequency vibrations from the oscillator and to insure
that the force transmitted to the structure was not sinusoidal, a
short length of rubber hose was placed between the oscillator and the
force gage. The entire assemblage thus became a two-mass system, but
the measurements of force and acceleration pertained only to the
structure proper.

The second method of applying a dynamic force consisted of strik-
ing the structure with the pendulum, the mass of which is shown at
the left in Figure 4.3. 1In this case the oscillator was removed and
the force gage was mounted on the opposite side of the buttress to
receive the blow of the pendulum. A spring between the force gage and
the pendulum prevented overloaeding the force gage.

Acceleration of the structure was measured with a Statham unbonded
strain gage accelerometer, model A5A-200-220 of approximately 800 cps
natural frequency, yielding 0.2 mv/g output at 10 volts excitation.

The force gage, similar to the one pictured in Reference 50, p. 223,

consisted of a cross of four equal arms of 1/2" width, meeting at right

angles, cut from 3/16" steel plate. The outer ends of the arms were

fixed in a rigid ring of 43" diameter, which was attached to the structure;
in

the force from the oscillator was applied over a 13  diameter disc at the

point of intersection of the arms. Four c¢-5 electric resistance strain
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gages of the SR-4 variety on the arms of the cross were wired in a
Wheatstone bridge circuit to give a voltage output proportional to
the force transmitted by the gage. A Schaevitz L.V.D.T., type 1000
5-L was used to monitor displacement, but this instrument was found
to be nonlinear in the region around zero displacement, so no quantita-
tive readings were made with it. Static displacements were measured
with & dial indicator acting against the stand shown at the right of
the structure in Figure 4.3.

The accelervmeter, ilhe force gage, and the L.V.D.T. were allvused
with a Miller C-3 carrier amplifier, described in Appendix I and
pictured in Figure 3.3, Appendix V. The three channels were recorded

h¥aYe) 4 b $
100 cps natural frequency in a Con a

by
dynamics oscillograph, model 5-12k4, described in Appendix I. The re-
sistance damping circuits of the galvanometers were all identical, the
resistances being those which produced 0.6 critical damping in one of
the galvanometers. Actual damping in the other galvanometers was not
checked experimentally.

The opacing of timing lines flashed on the oacillog?am by a timing

system in the oscillograph at approximately 0.0075 sec. intervals, was

checked with a General Radio vacuum tubé fork of 1000 cps frequency.

Digital Computer Treatment of the Data

Recorde were made of cyclic force and acceleration due to the
mechanical oscillator. A typical record made with the bolts in the
beam-column Jjoints at low tension, 30 foot-pounds torque, is shown in
Figure k

Appendix V. The high frequency components of this record

i i 14449, el

are possibly the result of the bolts moving against the'sides of the
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holes in the joint. At high bolt tensions, Figure 4.6, Appendix V,
these high frequency components were not present. As indicated by

the dots in Figure 4.5, 77 ordinates of force and of acceleration were
read from the oscillogram et equal time intervals over one cycle of
motion. In this instance, because of the high frequencies present, the
interval selected was onewhalf the timing interval, which was 0.00791
seconds.

The data were then entered into the Burroughs 220 digital computer
at the California Institute of Technulogy computling center. The force
ordinateévwere scaled to pounds and the acceleration record was scaled
and integrated twice in the manner described in Appendix II for cyclic
records, the resulting digplecement being arbitrarily centered so that
its integral over one cycle was zero. The computer then put out a
tape for later use, in which the corresponding values of F, X, i, and
x were sorted into two groups, depending on the sign of X.

Next, the integrated data were entered back into the computer with
a second program which calculated the mass and the coefficients in the
G functions. This program was written to handle up to 70 sets of ordin-
ates with x of one sign and to solve for as many as 1l coefficients in
the G function. The method of solution is as follows.

Fg = mia + Ko + lea + Kexa2 + ... + K7xaT +

+ Cik, + cgiaz + ... cuscalﬁ Pixg X, + nga‘?{;a + P3xa5<a3. (k.2)

An equation of the type 4.2 was assumed by the operator. The letter
subscripts here pertain to a particular cut, a, in the records. The
program allowed equation 4.2 to be formulated with any or all of the

terms shown, so the computer was instructed as to which terms were

desired on the right side by a simple code from the operator at the
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console. The operator also instructed the computer as to the number
of equations to be formed and from what place in the stored data the
values of F, E, i, and x entering into the equations were to be taken.
Thus, r equations of the type k.2 were to be solved for s unknowns,
which were the value of the mass and the values of the K's, C's and
P's on the right side of equation 4.2

It is shown by MirskﬁSl)that for the system of equations Ax = b,

the solution - (ATA)-lATb
r 2

is the one in which :g (Axi - bi) is a minimum, and hence is a best
solution in the least ;Ztares sense. This solution technigue, using
a 17 digit inversion procedure for ATA, was used for the set of equations
of the type 4.2, For an answer, the computer printed out the mass an&
the coefficients in the assumed G function, the values of F, X, x, and
x used in formulating the equations, the determinant of ATA, the quantity
i{f . (Axi - bi)2 € V2, and the values of the restoring and the dis-

i=

sipating functions, those associated with displacement and with velocity

respectively, corresponding to the data points used in the equations.

Experimental Results

It wvas at first believed that the inclusion of all 1h4 terms in the
G function of equation h.e would lead to the best answer, and the coef-
ficients of those terms which did not relate to the phenomenon would be
found to be very small. This was not the case in practice. When the
value of the computed mass in the solution was compared with the known
mass 1t was found that the inclusion of certain terms in G resulted in

computed values of the mass very greatly in error, in fact sometimes even
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of negative sign. The reasons for this unexpected behavior were not
fully investigated, but two observations can be made. First the data
contains systematic as well as random errors, and second, it is possiblé
that the inclusion of some terms produced columns in the matrix A
which were very close to linear combinations of other columns, in which
case the determinant of ATA should become very small. A check of the
determinants in those cases of very erroneous computed mass did not
reveal any apparent relationship between the value of the determinant
and the accuracy of the computed mass.

Table 4.1 summarizes some computed results from steady state data
with the connectlion bolts tightened to 70 foot-pounds torque. The

amplitude of motion here was 0.29". The column headed "Det ATA, F.P."

is the determinant of ATA in floating point notation. If the first two
digits of the number in this column are subtracted from 50, the result
is the number of zeros between the decimal point and the third digit.
Thus 483 means 0.003. The column labelled "Quantities" lists those
quantities whose coefficients were computed in equations of the type
4.2, The values listed under m, K, K5 Cl, Ko, K3 are the computed
values of these quantities. A value for m of 1.216G means that on the
left side of equation 4.2 there was entered F - 1.216 §, the true mass
being 1.216 pound—seca/in. In these cases the right side of equation

L .2 contained only the G function. The entry "0.L4#f" means that 0.4
pounds friction was assumed transmitted from the oscillator through the
bearing mount to the structure.

In row i of Table 4.1 it is seen that the inclusion of an x term

in the solution yields a computed mass of only 0.65, whereas if x is
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omitted, row (c), the computed mass is 1.3l for the data in which X

is negative. Rows h and j, where X is positive, show that the inclusion
of x in the G function yields a better value for the computed mass,

1.25 compared with 1.31. In other cases not tabulated the inclusion

of x in the G function in general resulted in poorer values of the
computed mass. The inclusion of products of x and X always resulted in
less accurate values of the computed mass. The five data points used to
compute the negative mass in row b included some very small forces and
displacements, so such an erroneous result is not surprising.

Shifting the force data 9° backward with respect to X, X, and x
resulted in a computed mass of 10.2 and a forward shift of 9° resulted
in a negative mass for the same G function which resulted in a mass of
1.31 when the force data was not shifted. This indicates that phase
lag in the seismic type pickups should be kept very small, a difficult
thing to do if much sensitivity is needed.

It became apparent, then, that the mass of the structure could
not be reliably determined, but rather the known mass would have to
be used as a criterion for the accuracy of the other terms in the answer.
The assumption that if the computed mass is accurate, then the accuracy
of the other terms in the answer ié greatest is, of course, not true if
systematic errors are present in the data. This is a matter which would

best ‘be Investigated with hypothetical data.

Comparisoh of Dynamic and Static Hysteresis Loops

Data from steady cyclic motion of the structure were collected under
three different conditions: 70 foot-pounds bolt torque and 30 foot-
pounds bolt torgue at 0.30" displacement amplitude, and 30 foot-

pounds bolt torque at 0.565" displacement amplitude. Using the
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technique described, the G functions were computed to yield the best
computed values of the mass. Then the true values of the mass times
acceleration vere entered on the left side of the egquations as des-
cribed previously, and ﬁhe G functlons were recomputed. These G
functions are plotted in Figures 4.7, 4.8, and 4.9, respectively. The
computed masses assocliated with the form of the G functions shown in
Figure 4.7 were 1.29 for x negative and 1.29 for ;c positive, in Figure
4.8 they were 1.05 and 1.05 respectively, and in Figure 4.3 they were
0.86 and 1.15 respectively. The measured data in both cases in which
the bolt torque was 30 ft pounds provided a severe test of the method.
The high frequency components noted in Figure 4.5, Appendix V, are of
approximately 150 cps, above the natural frequency of the recording
galvanometers. It should be noted that ﬁo velocity-dependent terms
are included in any of the plotted G functions.

To see how these dynamicelly determined restoring functions compared
with static restoring functions, the structure was forced through static
loops by mounting the force gage on the opposite side of the buttress and
attaching to it a long rod on which was threaded a collar seated in a
yoke; The end of the rod and the frame on which the yoke was mounted
are seen at the left of the structure in Figure 4.3, Appendix V. By
turning the collar with a wrench the structure could be displaced in
either direction, the force passing through the force gage. Deflections
were measured with a dial indicator.

To obtain the static loop in Figurc 4.7 the structure was simply
forced to the desired displacement from its rest position and then one
loop was.obtained. Before the static loops in Figures 4.8 and 4.9

were recorded, the structure was forced through several cycles in &n
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attempt to get a loop which would close. Unfortunately the L.V.D.T.
was not monitored over the static loops, so it is not known if the
static displacements represent the same absoclute displacements experi-
enced by the structure during the forced vibration. The extremes of
dynamic displacements always appeared fairly well centered on the rest
position of the structure.

The static forces transmitted by the force gage were much larger
than the dynamic forces transmitted over & loop of the same amplitude.
In Figurce 4.9 for instance, the maximum stetic force was LLO pounds,
but the maximum dynamic force measured by the force gage in the same
loop was only 120 pounds. It was observed that after high static
loads the trace of force would not return to zero under zero force.

The quadrants of the static loops in Figures 4.8 and 4.9 were adjusted
to allow for this, and hence the loops do not quite close at the tips.

Fair agreement between the static and dynamic loops is noted in all
the cases. The lateral positioning of the dynamic loop was arbitrary,
so the agreement in Figure 4.9 can bes made better than appears at first
glance. The downward displacement of the static loop suggests that
this loop was not centered about the same point, in absolute coordinates,
as the dynamic loop. Although the data are not spaced closely enough to
accurately describe the phenomenon, several sudden jumps in the force
took place during each cycle of static loading, particularly noticeable
under increasing load. The jumps were signalled by an audible creak
from the structure, followed by a small rapidly decaying vibration, after
which the force level was found to have suddenly changed. The static
curves are thus not smooth, but have a sawtooth appearance. No attempt

was made to accurately locate the positions of the jumps in a cycle,
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but some of them were noted to reappear on a second cycle at points
close to their appearance in a previous cycle. Whether these jumps
occurred in the dynamic case is not known. The high frequency compon-
ents in the records made with bolt torque at 30 foot-pounds suggest the
jumps took place, but at 70 foot-pounds torque at least two Jjumps were
observed in the static loop, yet the acceleration record, Figure k4.6,

is gquite smooth.

Test with the Pendulum

Dynamic excitation of the structure with one pulse, provided by
the pendulum, was intended to illustrate what could be learned on &
larger structure excited by & measured rocket blast. Scruton and
Harding applied such a blast to a tall chimney, exciting its first
mode.(6)

A pulse record is shown in Figure 4.10, Appendix V. The bolt
torque in this case was 30 foot-pounds and it will be noted that high
frequency components are present in the acceleration. Va2locity and
diSplacemenﬁ were determined by integrating the acceleration from rest.
Using all the data from rest to very close to the point of reversal of
veloecity, at 0.4L3" displacement, the best computed value of the mass
was 1.22 pound-secg/in., accompanied by the restoring function

G = 2.8 + 1037x - 948 x2 + 1.h2 + 10%x".
This function is plotted by crosses in Figure 4.9. It will be noted
that Kl is considerably higher than the value which was found from the
steady state data. Whether this increase is the result of experimental

error or if it actually occurs is not known. No static run was made

from the same starting conditions.
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Summary and Conclusions

A techniqﬁe has been proposed for determining the masses and the
restoring and dissipating functions of lumped-mass structures. The
technique is based on the solution of many simultaneous equations of
dynamic equilibrium of the masses, the form of the restoring and dis-
sipating functions being assumed. Preliminary considerations suggest
that the technique is applicable to linear structures; nonlinear non-
hysteretic structures, and hysteretic structures of the shear type,
in which a spring force is not transmitted beyond the masses contact-
ing the spring. In the latter case the proposed technique does not find
a general expression for the restoring function.

Experiments on a bolted joint single-mass structure with reasonably
good instrumentation indicate that practically the method does not work
as the theory indicates. If terms not related to the phenomenon are
included in the assumed restoring function, the accuracy of the computed
mass is decreased. It is suggested that the known value of the mass
be used as a criterion for judging the form of the restoring function.

Experimentally measured static hysteresis loops showed fair agree-
ment with loops determined from dynemic measurements by the method des-
cribed. The static hysteresis loops of the bolted structure were found
to be of a sawtooth form due to bolt slippage.

The work presented here points out the need for & study with hypo-
thetical data to indicate the effects of systematic errors in the data,
to indicate the precision necessary in the data if the method 1s applied
to multiple-mass systems with far reaching coupling among the masses,
and to develop a relationship between the required precision of data

and the spacing of the record cuts.



- 161 -

It is hoped that in additon to presenting new possibilities for
experimental analysis, the introduction of this method will result
in more vigorous efforts toward improving the instruments used in

structural dynamic work.



APPENDIX I

INSTRUMENTATION FOR STRUCTURAL VIBRATIONS

Introduction

The measurement of structural vibrations for the purpose of deter-
mining the dynamic characteristics of structures presents & challenging
problem from the standpoint of instrumentation. An instrumentation
system suitable for a wide range of structures should be capable of
obtaining, f'rom widely separated points on a structure, simultaneous
time records of motions with amplitudes varying from below 0.0001l inch
to above 0.50 inch, at frequencies ranging from below 0.5 cps to above
10 eps. In most cases these measurements must be made from the struc-
ture itself, without the aid of a stationary reference platform. In
addition, any phase lag should be small or should be accurately knqwn,
and the system should be portable, rugged, and versatile in order to
meet a wide range of field conditions. In aggregate, these requirements
form & severe specification for the instrumentation compbnents which are
available today.

In the paragraphs which follow a specification is presented for an
instrumentation systém which would be ideal for recording any phenomenon.
Then, using. this specification as a guide, a specification is written
for instrumentation to be used for recording vibrations of structures.
Following this are the results of tests on a system composed of certain
commercially available components, and the performance of the system is
evaluated in the light of the specification. Finally, the characterist-

ics of a number of other components are discussed.
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It should be noted in connection with the discussion of particular
instruments, that it is not implied that complete tests were made to
establish the overall quality of the equipment. In some cases the
instruments were used in a way different from that intended by the
manufacturer, and the equipment was perhaps not always operating at
its optimum level of performance. In a number of cases manufacturers
not mentioned produce equipment of similer characteristics.

The prices given for the equipment represent the prices which were
in effect in 1962, taken chiefly from manufacturers' catalogs. This
information is presented not for the purpose of comparing one manufact-
urer's product against another, but rather as an aid in preparing pre-

liminary cost estimates.

Properties of an Ideal Instrumentation System

In order to prepare a specification for an instrumentation system
to record structural vibrations, it is worthwhile to consider the proper-
ties desirable in & system which would be ideal for recording any dynémic
phenomenon. These properties will then serve as an outline for enumerat-
ing the specific properties desirable in the instrumentation system for
structurai vibrations.

An idesal system for measuring and recording any dynamic phenomenon
should have the following properties:

1. Tﬁe system should record instantaneously, at a suitable scale,
the value of the measured quantity, with a constant ratio between the
amplitude of the recording and the value of the measured quantity. This
means that in the case of & sinusoidal variation there should be no phase

lag in the record and that the calibration constant should be independent
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of the freguency and the amplitude of the measured quantity.

2. The system should give exactly zero record for zero occurrence
of the measured quantity; that is, there should be no noise, no drift,
no stray pickup, no cross-axis sensitivity, and no crosstalk among the
channels.

3. The system should permit easy and accurate calibration.

L. The system should provide asccurate and closely spaced timing
indications and should allow the simultaneous recording of several
signals to fix the time relationships among them.

5. The system should maintain these characteristics over a wide
range of environmental conditions, and the characteristics should not
change with the age of the systcm.

6. The system should be sufficiently rugged to withstand the
mechanical and electrical overloads encountered in service.

7. The system should produce a permanent record immediately visible,
capable of being reproduced, and able to withstand the mechanical tresat-
ment and the environmental conditions encountered in reducing the dats.

8. The system should be portable, versatile, easy to operate, and
not excessively costly.

No instrumentation system, of course, can possess in full measure
all the above properties. Compromises always must be made on the bases
of cost, the‘range of the variable to be measured, the accuracy desired,

operating conditions, and the existing state of instrumentation technol-

OogY.

Specifications for an Instrumentation System for Structural Vibrations

Using the properties of the ideal instrumentation system as a guide,

specifications for a system to measure and record structural vibrations
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are nov pregented. 'The system is not all inelusive, but it ia intended
to be useful for a wide range of structures. The values given below
specify the record gquality desirable for conducting an analysis of the
dynamic behavior of the structure, and they specify characteristics
desirable for a practical instrumentation system to be used in the field.
To some extent the specifications are based on the capabilities of
present day instruments, although in most cases the performance required
is considerably better than is commercially available today. As tech-
niques in structural vibration work improve and as increasing knowledge
of structural dynamic behavior requires more precise information, some
of the requirements given below will undoubtedly be made more severe.
It is assumed that the motion is sinuscidal and that the recording is a
trace suitable for visual analysis.
1. (a) Phase lag over the range 0.5 - 10 cps should be known

within 1°, and preferably should not exceed 1°. For comparison, this
is the phase shift caused by & measuring error of 0.0l inch on the
abscissa of a sine wave having & 3.6 inch period. A counter-rotating
force producing machine, with ordinary installation efforts, should
produce a sine wave within 2°® of the presumed aligmment.

(b) Over the frequency range 0.5 - 10 cps the system should
produce a record magnifying displacement at least 500 times, or yield
a trace amplitude of at least 3 inches per 0.00lg acceleration, which-
ever reguireme

(c) For the worst combination of frequency in the range 0.5 -
10 cps, amplitude of motion in the range O - 0.5 inch, and scale of
recording in the range O - 3 inch amplitude, a sinusoidal motion

representing an acceleration in the O - 0.5g range should be recorded
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with an error in instantaneous trace position of not more than 1% of
the trace amplitude.

2. The portion of the record representing anything except the
motion being measured should be not greater than 1% of the amplitude
of the recording for record amplitudes greater than 1 inch.

3. The system should be able to be calibrated in the field with
a calibration signal in the range of the signals being measured, and
it should be repeatable to within 1%.

Lk, Timing indications should occur at rates up to 100G per sec.
with an error of not more than 1% of the interval. The record drive
should provide speeds up to 60 inches per second and over any record
length of l/l6 inch, the speed should vary from the set rate by not
more than 1%. The system should be able to record simultaneous motions
occurring at as many as 18 points, with as much as 1000 ft. between the
most widely separated points.

5. Detectable changes in the performance of the system should not
occur due to; air temperatures in the range 32°F - 110°F, humidity,
strong sunlight, 60 mph wind (with reasonable precautions taken), alti-
tude from O to 10,000 ft., 5 g ambient acceleration at freguencies above
10 cps and l/lO g ambient acceleration at any frequency, or location of
60 cps power lines carrying 30 amps within 3 feet of any portion of the
systen.

6. All components of the system should be able to withstaend a 5 g
step loading without damage. The equipment should operate properly on
line voltages between 105 - 125v and not be damaged by voltages in the
range 95 - 130 v.

7. The record should be visible as soon as it is made and should
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not be reduced in quality by natural or artificial light, humidity, or
age. The record should allow easy, economical reproduction.

8. (a) The units sensing the motion should be light and small in
size so that they can be easily carried to and affixed to almost any
place in a structure.

(b) The system should be capable of measuring separately
rectilinear motions occuring in any direction, and angular motions
occurring in any plane. With reasonable precautions underwater measure-
ments should be possible.

(c) The system should require no special mechanical skills or
extensive training on the part of .the operator.

(d) The cost of the system should not exceed $2000 per channel
for 6 or more channels.

The specification presented is seen to be severe. It is hoped,
however, that these performance requirements will be accepted as a
temporary goal toward which structural vibration instrumentation will

proceed.

The Choice of Transducer

To obtain the most complete data for the determination of structural
dynamic characteristics it is necessary to make simultaneous time records
of the displacements, velocities, and accelerations of all the points of
interest on & structure when it is under the influence of some known
external forcing function of time, which may be zero. If only one of these
quantities is measured, theoretically the other two can be derived from
it, and the number of sensing and recording channels can be reduced by
two-thirds. Characteristics of the different types of transducers and

problems of treating the data determine which of the quantities is the
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most suitably measured for a particular structural test.

If only displacement is measured, velocity and acceleration must
be derived by differentiation, but in practice the resulting errors in
the second derivative make the method impracticalfsg) Where the motion
is purely harmonic, double differentiation of the record need not be
performed, but unless an apparently sinusoidal trace is accurately
determined to be sinusoidal, the second derivative cannot be assumed
as simply a multiple of the original trace. A good example of this
is shown in Figure Al.l, in which the sinusoidal-appearing displacement
is actually associated with square-wave acceleration. Fér a seismic-
type displacement transducer to record with an amplitude error of less
than 2%, its natural frequency must be not greater than approximately L40%
of the frequency being measured, meaning an extremely delicate, if not
impractical, instrument for sensing structural vibrations at 0.5 cps.

In a list of 14 low frequency transducers, the lowest natural frequency
appearing is 1 cps, indicating variable sensitivity around end below
this frequency as well as large variations in phase lag€53) These facts,
in addition to the bulk and weight of displacement transducers, the
difficulty of field calibration, and thevinability of one transducer to
measure both horizontal and vertical motions, make displacement measure-
ment optimum only in those instances in which amplitudes and frequencies
are so low that the large signal from the displacement transducer is a
necessity.

If only velocity is measured, one differentiation of the velocity
record might produce an acceleration record of acceptable accuracy.

However, for a seismic-type velocity transducer to accurately measure

velocity, the dynamic characteristics of the instrument must be the same
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FIGURE All
DOUBLE INTEGRATION OF A SQUARE WAVE
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as those of a displacement transducer. Hence velocity measurement
does not appear to be ideal-for the frequencies and field conditions
encountered in structural testing.

If only acceleration is measured, velocity and displacement must
be obtained by integration, a process inherently more accurate than
differentiation. It is shown in Appendix II that numerical double
integration of a sinusoidal record can easily produce results accurate
to within & fraction of 1% of the amplitude. Moreover, the accelera-
tion transducer is a small, fairly rugged instrument that exhibits
good linearity and small phase lag at frequencies well below its own,
and, if it is of large enough range, it is easily field calibrated and
one transducer can be used for both vertical and horizontal measure-
ments. The chief disadvantage of the accelerometer is that the rela-
tive motion of its seismic mass to its case is small, meaning that
extremely large amplification is required to actuate s recording
device. Reasonably good electronic amplifiers as well as very sensi-
tive and versatile recording devices are available, however, so that
a very wide range of structural motions, from those caused by a gentle
wind to those large enough to cause structural damage, can be success-

fully measured with one accelerometer.

Characteristics of an Instrumentation System

An instrumentation system for structural dynamic testing was put
together from commercially available components and was subjected to
leboratory and field tests. The tests were by no means exhaustive,
and only one particular sample of each component was tested, and the re-

sults should be viewed with this fact in mind. The capabilities of this
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system will be discussed according to the outline given previously,
and following this, the characteristics of a number of other components
will be presented.

The system tested consisted of the following:

1. Statham A5-2-350 accelerometer. This instrument consists
essentially of a seismic mass supported within its case by wires forming
a LY-arm unbonded Wheatstone bridge of 350 ohms bridge resistance. The
manufacturer states the instrument has a natural frequency of 100 cps,
0.7 critical fluid damping at room temperature, yields 17 mv/g output
at 9 volts bridge excitation, has transverse sensitivity of less than
2%, and weighs 4 oz, The price is $300 each.

2. Belden 8424 cable. This cable consists of 4 wires of AWG No.
20 and a shield in & neoprene Jjacket. Capacitance between wires is
55 mmf per ft., and capacitance between one wire and all the other wires
tied to the shield is 95 mmf per £t. The price is approximately lO¢
per ft. The cable terminated iﬁ Cannon XLR-4 connectors, 4 pin connect-
ors with a snap lock. The price per pair of connectors is approximately
$4.00.

3. Brush RD 5612-11 carrier amplifier. This unit consists of a
voltage source of approximately 3.6 volts r.m.s. at 2000 cps to excite
the accelerometer's bridge, a graduated attenustor in steps from 1 to
1000 to limit the size of the incoming signal from the bridge, and an
A.C, amplifier, a demodulator, and e D.C. amplifier in that order %o
produce a maximum output of 20 me into a 1500 ohm load. The weight is
23 pounds and the price is $825 per channel.

L, Consolidated Electrodynamics model 5-124 direct writing oscil-

logreph. The particular unit used was an engineering model, built before
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production had started, but similar in major respects to the production
model. The unit consists of a bank of miniature galvanometers holding
mirrors which deflect a beam of ultraviolet light onto light-sensitive
paper, producing a visible trace in a few seconds if ambient light
conditions are proper. The oscillograph is capable of recording up to
18 traces simultaneously on 7-inch wide paper, with paper speeds up to
6L inches per second. The galvanometers used were Consolidated Electro-
dynamics number 7-341, with a natural frequency of 100 cps, sensitivity
of 6.12/u.a/in. at 11 inch optical arm, terminal resistance of 47 ohms,
350 ohms damping resistance required. The oscillograph weighs 4O
pounds and the price is approximately $3030 if provided with timing
and grid lines flashed on the paper and a trace interrupter to aid
in identifying traces. The T-341 galvanometers are $180 each, and in
general there is needed with each galvanometer a damping resistor
mounting shell costing $8.25 each. The oscillograph paper, Du Pont
Lino-Writ, Type W, costs approximately 10 cents/foot.

The capabilities of the system are now presented according to the
outline given previously.

1. (a) Phase lag of the system at 10 cps can be known to within
i@“ by ex,é iting the accelerometer on an electrodynamic shaking maechine
which produces a clean sinusoidal acceleration at this frequency, and
comparing the trace wifh that produced by a very high frequency system
subjected to the same excitation. Using as a standard an Endevco 2215
piezoelectric accelerometer driving a C.E.C. T7-005 galvanometer of 3400
cps natural frequency through an Endevco model 2702 amplifier, phase

lag of the accelerometer-amplifier combination was checked at several
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frequencies, the results appearing in Table Al.l. The high frequency
capabilities of the Endevco sysfem were presumed to result in zero phase
lag, so the observed lag represents the true lag of the Statham-Brush
system. The crystal accelerometer and the accelerometer under test wefe
mounted with their cases almost touching each other on a 1-1/4 inch thick
aluminum block held away from the magnetic field of the shaker by a
yellow pine 4 x 4 post, 11 inches long. Acceleration amplitudes of
approximately 1 g were used in order to get sufficient signal from the
Endevco system.

The data show that in the 15 - 30 cps frequency range phase lags
can be determined consistently to within 5°, but in this instance the
accuracy is in doubt below 30 cps due to the poor waveform produced by
the shaker, an MB model S3B. Below 30 cps the acceleration traces showed
pointed peaks and were not perfectly symmetrical, the amount of distor-
tion varying from test to test. This is a possible explanation for the
erratic behavior of the amplitude ratios, although two of the crystal
accelerometers which were used as standards, when tested side by side
over the 15 - 100 ¢ps frequency range, showed amplitude ratios differ-
ing by 5% from those shown by the manufacturer's celibrations.

Accurate phase lag determinations were made difficult by the
erratic paper speed in the oscillograpb. In the l/h inch peak-to-peak
distances on the oscillogram of a signal from a Hewlett-Packard model
202 C oscillator, spacing variations up to 8% were noted. In obtaining
the data for Table Al.l, typical linear measurements between the peaks on
the oscillograms were 0.08 inch. To obtain consistent results it was
necessary to average five or so measurements made on both the top and

the bottom of the record with a scale divided into 50 parts per inch,
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estimating to tenths of the scale divisions.

Electromagnetic damping in the C.E.C. 7-341 galvanometer was
adjusted to 0.63 critical by measuring the overshoot due to a step
function. A check of this value was made by measuring the phase lag
of the galvanometer trace when it was excited, along with a T7-005
galvanometer, by an H.P. 202C oscillator. At 15 and 30 cps the
measured values checked within 1/2° those calculated on the basls of
0.63 critical damping. The value of resistance used to obtain this
damping would result in 0.79 critical damping according to the
menufacturer's data, illustrating the necessity of determining phase -
.lag of a system by actually conducting tests.

The pen. compensation control}on the Brush amplifier has a great
effect on the phase lag and frequency response of the amplifier. When
the control is switched off, the D.C. section of the amplifier is
reasonably flat to at least 1000 cps, but the amplifier as a whole shows
an amplitude droop of approximately 25% and a phase lag of almost 60°
at 50 cps. This information was obtained by using a Statham A5A-200-220
accelerometer of approximately 1000 cps natural frequency as a trans-
ducer with the Brush amplifier, and recording both this trace and the
trace from the crystal accelerometer on C.E.C. T-005 galvanometers.

The results of this test, shown in Table Al.l, indicate that viscous
damping in the Statham A5-2-350 varies from approximstely 0.45 critical
at 30 cps to 0.65 critical at 15 cps. A change of 6° in either of the
phase lag determinations at 30 cps would change the apparent damping

to 0.61 critical.

The test also disclosed that the output from the Hewlett-Packard
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202C oscillator at a given frequency and output setting can vary by
as much as 5%, depending on the settings of the decade knob and the
graduated frequency dial. With the Brush pen control turned against
its lower stop, but not off,vthe amplifier as a whole showed a 6%
droop and a 32° phase lag at 50 cps. The load on the Brush amplifier
for all the tests varied between 3K and 10K ohms resistance.

The effect of temperature on the damping rqzip of fluid damped
accelerometers has been reported by G.B. Whitefb ) The temperature
sensitivity of the Statham A5-2-350 accelerometer was investigated
by mounting & cardboard box over the head of the shaking machlne and
heating the enclosed space with a hair dryer. The changes in character-
istics due to heating to 130°F, shown in Table Al.l, are seen to be
small. At the elevated témperature the zero of the trace from the
crystal accelerometer shifted rapidly, probably the result of temperature
fluctuations, described in Reference 55.

(b) At 0.5 ecps the system being tested multiplied displacement
by 50 times, the magnification increasing as the square of the frequency
above this frequency. An acceleration of 0.001 g was recorded with an
amplitude of 2.0 inches with a rough cps noise level of 0.06 inch pesk-
to-peak. These sensitivities were obtained by boosting the level of
the carrier voltage to 6.3 v by connecting to a different tap on the
transformer at the oscillator output.

(¢) Error in trace amplitude due to frequency response of the
system can probably be made less than 1% of the amplitude in the 0.5 -

10 cps range. Dynamic measurements with the pen compensation control

against its stop, but not'off, showed no drop in amplitude between
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15 and 30 cps. No dynamic measurements were made below 15 cps, nor
were measurements relating static calibration to dynamic calibration
made. Static tests of the linearity of the system were conducted with
a protractor table and with a sine bar. The protractor table is
illustrated in Figure 3.3, Appendix V. The sine bar consisted of a
pair of knife edges held 624" apart by a piece of li" pipe so that
a 1/16" shim placed under one end produced & 0.00l g signal on an
accelerometer attached to the bar with its sensitive axis horizontal.
The protractor table was found to be faster and mofe convenient for
laboratory tests than the sine bar. Some meaéurements made with the
protractor table are shown in Table Al.Z2. Thesevmeasurements were
made by plumbing the accelerometer and then swinging the table about
a horizontal axis, making readings’at equal anéular deflections on
each side of the vertical. The errors shown in Table Al.2 include
the effects of the graduation and setting of the protractor table,
reading the record, drift due to temperature and other causes, and
the linearity and freedom from hysteresis of the entire system. As
mentioned in Appendix IV, the relatively large errors at small angle
settings are probably in large part due to positioning errors. From
this static test data it can be concluded that the reliability of low
frequency amplitudes is not better than + 4% for amplitudes above
0.001 g. The caliﬁration equipment was not sufficiently sensitive
to accurately calibrate the system at levels below 0.001 g.

2. The measurement of electrical noise in the system, that is

response other than that due to mechanical oscillation of the trans-

ducer, is difficult at high gein settings due to the almost inevitable
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presence of some mechanical excitation. The best method seems to be to
replace the sensitive transducer by another which has the same electri-
cal characteristics, but which is less sensitive mechanically. The
noise level of 0.06 inch peak-to-peak reported in paragraph 1 (b) was
measured at maximum gain, with the Statham AS5A-200-220 mounted on a
five pound steel block resting on foam rubber, replacing the Statham
A5-2-350, the former having a bridge resistance of 220 ohms and thus
not exactly duplicating the A5-2-350. In several tests for noise at
different locations about the city, the noise level was found to depend
on whether the accelerometer cable shield was floating or tied to ground
or to one of the bridge terminals, whether the amplifier was grounded,
or whether the amplifier ground was tied to the accelerometer case.

No set of circumstances was consistently best. A necessary procedure
to combat 60 eps noise seems to be to reduce it by trial and error at
the time and place the record is to be made. A discussion of noise
control is given in Reference 56. No output could be noted by rapidly
manually flexing the accelerometer cable or by shouting close to the
amplifier. At full gain, breathing on the accelerometer produced iery
large drift. When the amplifier was within a foot of the oscillograph,
pickup from the timing system was noted.

To investigate cross-axis sensitivity, the accelerometer was
bolted to the MB shaker so that its sensitive axis was at approximately
90°* to the shaker motion, and then shims were placed under the edges of
the accelerometer by trial and error until minimum response was found.
The minimum that could be obtained was 4% of the axial motion, but the

size of the transverse component of the shaker motion was not known. A
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static investigation was conducted by plumbing the accelerometer case
with a sensitive level and noting the difference in the trace deflect-
ion for equal angular deflections on each side of the plumb line. Two
A5-2-350 accelerometers showed internal misalignments of 1/3° and 3/4°.
The significance of this misalignment is illustrated by the problem

of attempting to measure a vertical motion in the presence of a horizon-
tal motion ten times as great. A misalignment of 1° results in an
unvanted signal amounting to 17% of the signal being measured. A sug-
gestion for the solution to this problem is shown in Appendix III.

3. The system allows easily repeatable field calibration by
simply reversing the accelerometer about a horizontal axis. A small
level guarantees good orientation. If an accelerometer of less than
l g range is used, a sine bar or protractor of some sort must be used
for field calibration. The alternative to this is to calibrate in a
laboratory by rotating the accelerometer through an angle in the
earth's field and then to obtain a reference signal at this amplifier
gain by shunting a resistor across one leg of the bridge, the latter
procedure then belng repeated 1n the fleld to measure sensitivity. The
uncertainties of field measurements are such that direct field calibra-
tion is always preferable.

L. Timing lines in the oscillograph occur at rates up to 100 per
sec., the accuracy of the interval depending on the temperature of the
circuitry. Using as a reference a General Radio Company vacuum-tube
fork of 1000 cps frequency and rated after warmup at 0.0%% accuracy,
the timing intervals were found to be long by 1.1% after a six minute

warmup and short by 3.3% after one hour warmup. Very slight variations
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of the timing indications with respect to the 1000 cps signel were
noticeable, 0.0002 sec. or so, possibly due to the fact that the
paper speed is variable and'the timing lines are not focused on the
paper at the same point as the galvanometer traces. The oscillograph
holds 16 galvanometers, but practical experience indicates that with-
out a trace identifying feature, four is a reasonable maximum number
of traces to record if amplitudes are two inches or so. The system
balanced satisfactorily with 460 feet of accelerometer cable, sensi-
tivity being reduced about 10%. Balancing with long cable runs was
possible only when the wires carrying the bridge input and the bridge
output were arranged symmetrically within the cable.

5. The performance of the system throughout the environmental
range specified has not been tested. The effects of temperature on
the accelerometer have been noted in paragraphs 1 (a) and 2. The
galvanometer specifications indicate satisfactory performance under
4 g ambient acceleration, but the effects of base accelerations on the
amplifier are not known. Power cables carrying 10 amps have been
touched to all components wilthout noticeable effect. The XIR-4 con-
nectors showed deterioration with use. Cannon WK-5-21C and WK-5-22C
costing $5.65 per pair appear to be an improvement.

6. The accelerometer is rated by the menufacturer for 6 g maximum
acceleration. Two A5-2-350 accelerometers, used for about 20 days of
field testing of structures, were transported in an automobile about
75 miles each day and were moved about considerably in the structures
without suffering damage. The oscillograph undervent the same service

without damage. Shock resistance of the amplifier is not known. Tests
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of the equipment on line voltages between 105V and 125V showed no
changes in sensitivity. No tests were made with voltages outside
these limits or with other than 60 cps line frequency. The output
circuit used was such that the amplifier overloaded at approximately

5 inches trace deflection and thus could not overdrive the galvano-
meters.

7. Oscillograph records made outdoors and shielded from direct
sunlight by two layers of amber colored plastic were usually visible
within five to ten seconds and were of satisfactory gquality for exami-
nation. These records were examined indoors under fluorescent lighting
for approximately an hour and were then stored in lightproof boxes for
as long as 12 months with no appreciable deterioration in quality.
Records made under these outdoor conditions photographed only moderate-
ly well and were poorly reproduced on a Xerox copying machine. The
records could be fixed with Du Pont T1l-D Direct Writing Paper Developer,
but the fixing decreased the contrast. For good reproduction of records,
better shielding is needed outdoors. Prolonged exposure to indoor
lighting and very short exposure to sunlight will destroy records which
have not been fixed.

8. (a) In field testing, the accelerometers could be easily
mounted to any surface by bolting them to aluminum mounting blocks
which were held to the mounting surface by Epoxylite Corporation No. 204
adhesive, an epoxy resin which hardens in 60 to 90 seconds at room
temperature. Figure 2.1k, Appendix V, shows a portable mounting block
which was simply carried from place to place and set down on horizontal

surfaces without adhesive, the motion being transferred by friction.
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(b) Accelerometers of 2 g range allow measurement in any
direction by simply orienting the mounting block properly. The
measurement of angular motions is discussed in Appendix III. No
underwater medasureuments were attempted, but they appear feasible
if the accelerometer case is sealed with paraffin and underwater
connections are eliminated.

(c) No ospecial mechanical skills or extensive training are
required to operate the system.

(d) The cost of the system exclusive of cable and tax is

approximately $2000 per channel for six channels.

Characteristics of Other Components

The manufacturers' specifications for meny other components were
examined, and several of the components were subjected to laboratory
tests to determine their suitability for structural dynamic work.

Once agein it is pointed out that the equipment was not always used as
the manufacturer intended, and the tests were not exhaustive. Dynamic
and electronic instruments have the interesting property that seemingly
small modifications can produce large changes in characteristics, and
very few modifications were attempted.

Four other accelerometers were tested, two of the variable reluct-
ance type, one cdntaining a linear variable differential transformer,
and one operating on a servo principle. The variable reluctance units,
the Consolidated Electrodynamics 4-260, + 12 g range, no longer manu-
factured, which puts out 45 mv/g at 10 v, 2000 cps, excitation and the
Daystrom—Wiancko Bngineering Company type AlOOl, + 5 g range, priced

at $250 which puts out 320 mv/g at 16 volts, 3000 cps, excitation and
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the L.V.D.T. unit, the Schevitz HG-30, + 30 g range, priced at $180,
which puts out 40 mv/g at 10 volts, 2000 cps, excitation had two un-
desirable characteristics in common. The bridge output of all three
units contained higher harmonics of the carrier, and at high gain settings
the output of the entire carrier amplifier system showed a higher noise-
to-signal ratio than was the case with strain gage accelerometers. The
harmonics of the carrier were observed on an oscilloscope when attempts
were made to balance the bridge, the fifth harmonic being most noticeable.
Whether the harmonics were initially present in the carrier or a result
of non-linearities in the accelerometers is not known.

0dd harmonics pass through a demodulator, appearing as D. C. out-
put at the recorder, and it was found to be impossible to keep the
trace on the paper when attempting to balance at high gains. In obtain-
ing & null in the balancing operation, the bridge was actually unbalanced
for 2000 cps excitation in order to overide the output due to the odd
harmonics. It is not known if the residual unbalence due to harmonic s
remains constant when the accelerometer is subjected up to l/lO g or so.
Balancing was always found to be poorer when the sensitive axis was
vertical than when it was horizontal. In one test of the C.E.C. 4-260
and the Brush RD 5612-11, the null at balance was 15 mm pen deflection
at X2 gain, with 0.8 ufd across the bridge output and the accelerometer
horizontal. When the asccelerometer was swung through angles varying
from 1° to 90° on the protractor table, the maximum non-linearity noted
in the output of the system was U%.

The obvious remedy for this situation is the insertion of a filter

ahead of the demcdulator to reduce the higher harmonics. The Daystrom-
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Wiancko series 3000 amplifiers and the C.E.C. System D amplifiers
contain filters to remove the third harmonic of the carrier. In Table
Al.3, in which output and balancing date are given for four accelero-
meters used with the Brush system, the effects of capacitance &across
the bridge output, acting as a low pass filter, are shown. The fact
that the sensitivities shown in Table Al.3 do not agree with those
specified by the accelerometer manufacturers is possibly due to the
fact that all but the strain gage transducer shift the frequency of
the carrier considerably, and since the Brush amplifier provides a
reference signal at the demodulator only at either 0° or 90° to the
bridge excitation, the bridge output at shifted frequency produces
less signal from the demodulator.

The servo accelerometer, the Palomar Scientific Corporation model
PAL-15-5052, + 2 g range, priced at $500, does not require carrier
excitation, but is powered by dry cells, + 15 v, and puts out a D.C.
signal of 3.75 v/g (open circuit). The output impedance is 5000 ohms,
so the unit can be used to drive C.E.C. 7-341 galvanometers without
further amplification, only an attenuator being used ahead of the galva-
nometer. With Hewlett-Packard model 350 A, 500 ohm attenuator set at
zero Db, the sensitivity of the combination is approximately 3/0 inch
trace deflection per 0.001 g, but this is accompanied by an overriding
high frequency noise, at times exceeding the signal from 0.005 g. The
unit therefore does not appear to be suitable for the majority of strue-
tural testing.

The Kistler Instrument Corporation manufactures a servo acceler-
ometer, model 302, priced at $1100, which has specifications indicating

sensitivity of approximately % inch per 0.001 g with the C.E.C. T7-341



VRQHO0TY NEd HSN¥E NV MEIJTTWY MITH¥VO 1T-219¢ 0¥ HSN¥E HHL HLIM (SN SHALIWOHITIOOV gnod 40 NOSTHVIWOD

- 186 -

‘Ag*# -xoxdde 9383T0A ISTLIB)

4OTX utTed 38 um Tg

1X ured 38 mm 9T OGX uTed 3@ um #g

wm 4T Jum 0T

w6

sdo ooT = Y2

sdo JJ = "3
05E~2-Gv 8¢ ‘1o00TV
wey1se3s OYoUBTM

€1V FIEvL

*#ZX UTed 1® W gg
02X ursd 18 wm 67

> 9
m 9z

sdo 00T = U3

092~h “2°¥°D

-andjno o%p1aq ssoxoe pI¥ €£°0 N

*andino 23pTJaq s$sOI0® PIY H°0 »

TN 3=
ogxX ursd 38 um Og 91eSJJO 2oUBTRY

000TX uteD
wn Qz 1B m\ss
£31AT3TSUSG

sdo o1 = U

0€-9H
Z1 TASBYDY



- 187 -

galvanometer. As with the Palomar accelerometer, however, there

exists the problem of cancelling out a static 1 g signal when vertical
accelerations are to be measured. To allow 0.001 g measurements to be
made with an accuracy of 1Ok, the 1 g signal from the accelerometer and
the balancing signal would have to be stable to 0.0l%. Specifications
for the Microdot Incorporated PS-290 power supply, priced at $250,
indicate that & stable balancing signal is possible.

Although some piezoelectric accelerometers and charge amplifiers,
such as those menufactured by the Endevco, Kistler, and Statham corpor-
ations, possess low frequency response, none was found with specifica-
‘tions indicating sufficient sensitivity for measurements in the 0.001 g
range.

Several other strain gage accelerometers appear promising for
special sltuatlons iln structural dynamic testing. The OStatham
AL-0.25-350, + 0.25 g range, 15 cps natural frequency, priced at $300,
producing 140 mv/g at 9 volts excitation should be very useful for
measuring the response of dams and building foundations to shaking
machine excitation and for measuring the response of buildings to wind
excitation. The Statham A 301-0.5-350, + 0.5 g range, 5 cps natural
frequency, priced at $245, producing 40 mv/g at 9 volts excitation,
should be useful for wind induced vibrations in the presence of unwanted
high frequency vibrations caused by machinery. The Statham A5-5-350 ac-
celerometer, + 5 g range, 190 cps natural frequency, priced at $300,
producing 10 mv/g at 1l volts excitation is a more rugged instrument
exhibiting less phase lag than the A5-2-350.

Among the carrier amplifiers considered, the William Miller Company

model C-3 appeared to be the best suited for structural dynamic testing.
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The system provides 3000 c¢ps bridge excitation adjustable up to 10
volts and puts out up to 10 ma into a 4O ohm load. Reluctance ty?e
accelerometers can be balanced very well by the system, indicating

a very pure carrier and/or built-in filters to suppress carrier
harmonics. No circuit diagram of the system was available, and
unfortunately the company is no longer in business. The particular
system tested, about ten years old, consisted of one package of six
amplifiers and one cohtaining a power supply, total weight 230

pounds. Under the same test conditions, the noise-to-signal ratio

of the Miller C-3 is approximately one half that of the Brush

RD 5612-11. In both systems the noise increases as the bridge is unbal-
anced, indicating that some noise is on the carrier. Phase lags of

the C-3 system only at 15, 30, 45, and 100 cps were measured as 5°,

5%, 10°, 12° respectively, using the Statham A5-200-220 accelerometer
as a transducer with the C-3 and using the Endevco accelercmeter and
amplifier as a standard as was done in Table Al.l. Once again it is
pointed out that the wave forms were not perfectly symmetrical. Ampli-
tude ratios of the C-3's response to the Endevco's response at the above
frequencies were 1.00, 1.002, 1.16, and 1.17 respectively. These
ratios are difficult to explain on any other basis than conditions of
mounting the accelerometers to the shaker.

System D, manufactured by Consolidated Electrodynamics Corporation
is designed for use with reluctance transducers. When the system was
tested with the C.E.C. 4-260 accelerometer and the C.E.C. 7-341 galva-
nometer, the maximum sensitivity that could be obteined was approxi-

mately ©.32 inch trace deflection per 0.00l g; noise-to-signal ratio.
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was not measured., The system costs approximately $1500 for a
12-channel power supply and rack plus $550 per channel.

The Sanborn Instruments model 850-1100 A carrier preamplifier
when used with the Statham A5-2-350 accelerometer and the C.E.C.
7-341 galvanometer, showed a noise-to-signal ratio approximately
double that of the Brush RD 5612-11. This amplifier has graduated
attenuation in steps from 1 to 200 only, mesuing that if a 2 g
calibration signal at maximum attenuation fills the paper, a 0.001 g
signal at maximum gein will have only one fifth this emplitude. The
price of the 850-1100A is $550 for an 8-channel power supply plus
$365 per channel.

Specifications for the Minneapolis-Honeywell Company's Heiland
130-20C carrier amplifier indicate sensitivity on the order of that
of the Brush amplifier, but the amount of noise is not known.

No D.C. amplifiers were tested. Specifications for the Brush
RD 4215-20 very high gain D.C. preamplifier indicate amplification
about 1/15 that of the Brush RD 5612-11 carrier system.

The Sanborn model 650 direct writing oscillograph and the
Minneapolis-Honeywell model 1508 Visicorder will perform the same
functions as the C.E.C. 5-12L4 oscillograph. These models, both of
which record on 8 inch-wide paper, possess a few features not found
on the C.E.C. b-i?h and sre priced competitively with it. No tests
were made on the paper drive and timing systems of these oscillographs.
Mid Western Instruments Company's model 621 F direct writing oscillo-
graph records on 6 inch-wide paper and is priced several hundred
dollars cheaper.

Pen recorders of up to 8 channels, using ink, electric, or thermal
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writing, are available from the Brush and Sanborn companies. They
produce clean traces of up to 50 mm peak-to-peak at paper speeds from
1 to 250 mm/sec. in some cases. The penmotors have a natural freguency
of about 50 cps and are damped chiefly electromagnetically, although
undoubtedly there is some friction between the pen and the paper. A
2-channel Brush RD 232100 costs $725; and 8-channel Sanborn 356-100
costs $2700.. The chief disadvantages of pen recorders are their bulk
and weight, their limited recording amplitudes and paper speeds, their
poor high frequency response, low sensitivity, and lack of versatility.
The multitude of galvanometers available for the light beam recorders,
ranging in natural frequency from 18.5 cps to 8000 cps, the greét
sensitivity and the ease with which damping can be adjusted in the
electromagnetically damped types, plus the possibility of recording
amplitudes up to 7 inches or so peak-to-peak and the high paper.speeds
possible meke the direct writing light beam oscillograephs much more
versatile recording instruments. On the other hand, the records from
the light beam oscillographs have less contrast and do not reproduce

as well as the records from the pen recorders.
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APPENDIX IT

NUMERICAL INTEGRATION OF STEADY STATE ACCELERATION RECORDS

A program was written for the Burroughs 220 computer to numerically
integrate data from acceleration records to yield velocities and displace-
ments. The method requires only that the motion be steady state, so that
the wave form repeats itself from cycle to cycle. In the case of non-

- symmetrical records the zero of the acceleration record need not be known,
but can be established from the steady state conditions. The zero of
velocity can be established similarly, but no absolute frame of reference
for displacement can be determined without the aid of an absolute dis-
placement measurement.

The_method of integration, previously described by Benscoter and
Gossardfb7)consists of finding the areas beneath segments of second degree
parabolas fitted to three equally spaced ordinates on the curve to be
integrated. The details are illustrated in Figure A2.1. The first integra-
tion of acceleration usuelly yields & velocity at the end of the cycle
different from that at the start of the cycle. This difference is used as
a criterion to adjust the zero of the acceleration data so that a second
trial at integrating the acceleration yields no net change in velocity
over the cycle. The same procedure is then followed to obtain displace-
ments from velocities, the criterion of no net gain in displacement over
the cycle being used to adjust the zero of velocity.

To illustrate the accuracy of the method on sinusoidal date, the
acceleration dats was taken as the ordinates of a sine wave at intervals
of 18°%, giving 21 data points for one cycle. The largest numerical error

in the resulting displacement was 0.2% of the amplitude of the displace-

ment record.
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APPENDIX III

SEPARATION OF THE EFFECTS OF HORIZONTAL, VERTICAL
AND ANGULAR ACCELERATIONS

Given two accelerometers mounted on a rigid surface, Figure A3.1,
which undergoes rotation in the earth's gravitational field, ofsin w t,
and a reference point, o, on the surface experiences horizontal and
vertical translations, h sin co>t and v sin wt. The inclination of the
equilibrium position of the plane to the horizontal, H, is shown as ﬁ .
The angles o< and ﬁ>are assumed smaell so that their cosines are essent-
ially unity, otherwise the motions of the accelerometers are not pure
sinusoids of one frequency.

Transverse sensitivity of the accelerometers is assumed to be due
solely to internal misalignment of their spring-mass systems to their
cases, In Figure A3.1 the angles 91 and 92 designate the unknown mis-
alignment of the axes of sensitivity, S, of the accelerometers to the
plumb line, P. If the motions of the plane cén be held steady or can
be duplicated so that two measurements can be made, the effect of this
transverse sensitivity can be eliminated by avecraging the measurements
made with the accelerometers mounted, first as shown by the solid arrows,
and second, rotated 180° about the plumb line, as shown by the dashed
arrows. If the axis of this rotation is not a plumb line, then sensitiv-
ity to horizontal motion has not been eiiminated. Similarly, when the
accelerometers are mounted to sense horizontal motion, rotation about
the horizontal will eliminate the effects of vertical motion. If ©@; and
6, are less than 8%, the loss of sensitivity in the direction of measure-

ment is less than 1%.
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Assuming now that double measurements are made so that misalignment
is not a factor, accelerometers #1 and #2 will record the following
accelerations when the motion is at the extreme point of the cycle shown

in Figure A3.1(b):

2 2 2
-tohoe - WiV - WRC =z a8 (A3.1)
2 2
-wzhoc - WV + W Rgcx = a2v (A3.2)

The first term in equations A3.1 and A3.2 results from the inclina-
tion of the sensitive axes, S, of the accelerometers to the horizontal
acceleration when the mounting plane has undergone rotation,®< . This
term does not vary in time as sin w+t as do the other terms, but as
Sin?QJt, meaning that the records contain a component at twice the forcing
frequency. This presents no difficulty, however, since in pracﬁice ampli-
tudes are usually determined by measuring the peak-to-peak distance of
the trace, and this measurement automatically eliminates the effect of
the first term. Subtracting equation A3.1 from A3.2:

Wi (R + Ry) =8y, -8 . (43.3)
Thus, K can be determined.

Assuming now that a1y and s, represent pesk-to-peak messurements
so that the first term does not appear, a solution for v, the amplitude
of the vertical motion of point o, is now possible from either equation
A3.1 or A3.2.

If now the amccelerometers are rotated about a horizontal axis 90°
to the right to sense horizontal accelerations, and once again double
measurements are made to eliminate misalignment, the instruments will
record the following accelerations at the extreme point of the cycle:

xw?(y + & R)) - Wk - g ey, (83.4)

xw?(v - «Ry) - w?h - g =8y (a3.5)
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The first terms of equations A3.4 and A3.5 result from the
inclination of the sensitive axes, S, to the horizontal at the extréme
of the motion, and once again, if peak-to-peak measurements are made,
these terms do not appear in equations A3.4 and A3.5. With &« known
from equation A3.3, h may now be determined, or if measurements of
vertical accelerations are not made, the horizontal accelerometer may
be rotated 180° about a vertical axis, and the average of this measure-
ment and the initial measurement will notbe influenced by X .

A numerical example is of interest to illustrate the importance of
the terms in the equations above. A digital computer analysis of the
new Encino Reservoir tower shows that at the fundamental frequency of
2.11 cps a l-inch horizontal motion on the penthouse floor is accompanied
by & rotation of 0.00108 radians and a vertical motion of 0.00036 inches
measured at the center of the penthouse floor, which is 14'-8" in dia-
meter. Then, if a1y, and a,, are assumed to represent peak-to-peak
messurements, equation A3.1 and A3.2 have the values shown in equations
A3.1'and A3.2':

-(191)(0.00036) -(191) (88)(0.00108) = -18.22140 (A3.1')

-(191)(0.00036) +(191)(88)(0.00108) = 18.08388. (A3.2')

The difference between the right hand sides of equations A3.1' and
A3.2' would be difficult to measure accurately on an oscillogram, indicat-
ing that vertical motioﬁ in this instance would have to be measured at
the center of the tower, a measurement which would then include flexing
of the floor.

Assume now that the accelerometers are not rotated about the plumb
line to eliminate transverse sensitivity, and that total misalignment

of each is 13°, & reasonable maximum, 1° of which is internal, &and 3°
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external misalignment. Then the trace amplitudes in equations A3.1' and
A3.2' will include the term (0.0262)(191)(1) resulting from horizontal
acceleration. If the unknown alignment errors are in opposite directions
the value of K calculated from equations A3.1' and A3.2' will be
0.000782, in error by 28%. If a vertical measurement were made at the
center of the tower with an accelerometer having a lé?alignment error,
the vertical signal would be hidden by a horizontal signal T3 times as
great. Hence, the measurement of vertical motion at this point on the
structure does not appear feasible.

The measurement of horizontal motions on the penthouse floor in the
first mode does not require the refinement of rotating the accelerometer
about the horizontal inasmuch as the vertical acceleration, even on the
outside edge of the tower, would result in only 1/4 of 1% error for a
15° misalignment. Neglecting the term involving gravity in this instance
would result in an error of 1/5 of 1%.

In the second mode of the structure, rotation is about 12% times as
great as rotation in the first mode for the same horizontal deflection,
but since the frequency is approximately four times as great, the
importance of the (X g) term in equations A3.4 and A3.5 is not as great
as before. The computer shows vertical motions in the second mode to
be about 1/60 the horizontal motion on the penthouse floor. If a mis-
alignment of only 3° is assumed in measuring vertical motion at the
center of fhe tower, the vertical signal will still be in error by 52%.
The rotation of the floor in the second mode can be determined more
accurately, the worst combination of 13® alignment errors causing errors

in ® of only 2%.
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APPENDIX IV

STATIC CALIBRATION OF ACCELEROMETERS

Let it be assumed that an accelerometer is to be calibrated by
mounting it with its sensitive axis vertical on a protractor table,
and then rotating the table about a horizontal axis by equal amounts
on either side of the vertical. In Figure Ak.1(a), P represents the
plumb line, P' represents the assumed plumb line, but in error by an
amount Ql, and S represents the sensitive axis of the accelerometer, which
is assumed vertical, but due to internal misalignment makes an angle of
6o with P'. The calibration angle to be swept through is designated
by X

The acceleration, in g's, experienced by the accelerometer is
(-cos ¥ ), where ¥ is the total angle from the vertical. The signal
which balances the effect of gravity when the accelerometer is assumed
plumb 1s, in g's, cos (Gl + Gz), assumed unchanged throughout the
calibration. The net output, of the accelerometer then, is

N = cos (Gl + 92) - cos ¥

By reverslng the accelerometer about P' the sign of G2 can be

changed, and thus, by changing the direction of o<, four values of X

and of N can be obtained.

cos (X + @y + 02)

=
—
"

cos (Gl + 6,)

1)

Np « cos (6 + @g) - cos (& + 6; - 65)

cos (8] + 6) - cos (-%X+ 6 - 95)

=
W
"

N, = cos (o) + 62) cos (-X+ 61 + 92)
By manipulating the various expressions for Nl,2,3,h it becomes

apparent_that no simple combination of reversals can eliminate the
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(a) H

FIGURE A 4.
STATIC CALIBRATION OF ACCELEROMETER
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effects of @l, and 92. However, if the direction of « only is reversed,
and the accelerometer itself is not reversed on its mounting, the result
is:
Ny + N = 2 cos (Gl + 92)(1 - cos &),
If (Gl + 92) is less than &°, the error in calibration, based on knowledge
of o only, is less‘than 1%.
It is worth noting that for small values of L , the calibration
signal varies as 0<2, meaning that angular settings must be accurately
made. When Xis 1%, a setting error of three minutes of arc results in
an error of 10% in the signal.
Let it be assumed now that the accelerometer is mounted with its
sensitive axie horizontal as in Fig. AL.1l (b) where H represents the
true horizontal, H' the assumed horizontal, and S the position of the
sensitive axis for balancing. The net output in g's in this case is
N = sin (0] + 65) - sin (X + 61 + 6p).

Here again four values of ¥, and thus four values of N, are possible:
Ni= sin (6] + 6y) - sin (ot + 8] + 6,)
Np = sin (6] + 65) - sin (X + 6, - &)

N3 = sin (6] + @) - sin (- X+ ¢, - ;)

Ny = sin (el + @2) - sin (- X+ 8 + 92).
If the accelerometer is not reversed on its mounting, but o< only
is changed in direction,
Ny - Nj = -2 sinK cos (@l + 65),
and once again, if (8] + ©,) is less than 8° the error in calibration is

less than 1%. No other manipulation of the expressions appears to result

in an expression with less dependence on ©; and ©p.
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NEW ENCINO RESERVOIR OUTLET STRUCTURE

FIGURE 2.1

CLOSEUP OF PENTHOUSE

FIGURE 2.2
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180 FT. HIGH CONCRETE INTAKE TOWER
EXCITED BY MAN SHIFTING HIS WEIGHT
|——-| ; SEG ' BACK AND FORTH IN RESONANCE AT TOP

. . R e e \ L L o . H ) '

DAL AAARTSL00e0NNNNng

wy umummmmmu T
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‘ | K T

0.001 IN.

RECORD OF MANUALLY EXCITED VIBRATION

FIGURE 2.12

STRUCTURAL VIBRATION EXCITER

FIGURE 2.13
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ACCELEROMETER ON PCRTABLE STEEL BLOCK

FIGURE 2.1k

VIEW OF BRIDGE, LOOKING TOWARDS DAM

FIGURE 2.15
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" ACCELERATION

FIGURE 2.21
RESONANCE CURVES
NEW ENCINO TOWER

(O-1) LOADING

0.010 ¢
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84' LEVEL, TOWER

FREQUENCY (CPS)
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(a) (b)

(c)
ACCELERATION RECORDS

FIGURE 2.23
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(Tra.conao) (Tvacing)

(a) (b)

(e)
NONLINEAR ACCELERATION RECORDS



- 218 -

WVQ NOANVO A4Q 40 SNOILJ3S
I'e J4N9I4

VY3 LSdN ONIMOCT NOILI3S

s 2 3 3 ¢
o —__S. ° 8
M L [[[[ .WI..N-// i e
W ; HO0NA38 S 4
i | ) : i ;/r/
_ J 401D AV | T &
, P 40100 W0 | ~
o ]
|||||||||| e -~ ~
||||||||| ~
T 3N ONNOY9 WNISIHO” NN
\\\\\\ ////
\\\\ > //
et ——— >

Pz
SINIHOVIN ONIMVHS

NOILD3S SSOMD ISHIASNVHL

)_ __/ .
M: 4401N2 AV

~_ (216) WINILYA JSHVOD SN,
.

s
N (2161)
T~~~ ~ 7 WML
~~ ~ (218 7 3S¥V00
~. ~ 714 DITNVHOAH \\
~— -~ ~
(€660 ™~ G

T4 GILOVINOTS ~ N

- T 3A3T H3Lvm
02

SINIHOVN ONIHYHS 7



- 219 -

STRUCTURAL EXCITERS ON DRY CANYON DAM

FIGURE 3.2

INSTRUMENTATION

FIGURE 3.3



DISPLACEMENT - (IO"8 IN. PER POUND)
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% 180°

|

o-A, STA. 3+75
nA-B, STA. 2+25
X-C, STA. 3+ 15

FORCE, STA. 3+75

ENDS OF DAM,
‘ STAS 0+90,5+75

B 950°
'.... ..' b_.' ’ \\
35',c §0°.c 30',0 )f ll f \
PHASE LAG, POINT C , ?l ‘%\
b \ ,’4 240°
|
320° \ /
\%J
FREQUENCY (CPS) 665°
2 3 a
FIGURE 34

EXPERIMENTAL RESONANGE CURVES OF

Y CANYON DAM
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LABORATORY STRUCTURE, SOUTE SIDE

FIGURE k.3

LABORATORY STRUCTURE, NORTH SIDE

FIGURE k.k
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30 foot ~pounds torque

- | 20079 sec.

(Trucm%\

OSCILLOGRAM, 30 FOOT-POUNDS BOLT TORQUE

FIGURE L.5

4 po.co19 sec.

('T'racmg) 10 foot -pounds torque

OSCILLOGRAM, TO FOOT-POUNDS BOLT TORQUE

FIGURE 4.6
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30 feot -povnds torque

4 I. o.0079 SeC.

(Tracine)

OSCILLOGRAM, PENDULUM IMPULSE

FIGURE 4.10



